Sains Malaysiana 44(12)(2015): 1757–1763
Rigid/Flexible Polyurethane Foam Composite Boards with
Addition
of Functional Fillers: Acoustics Evaluations
(Buih Poliuretana Tegar/Fleksibel Papan Komposit
dengan Penambahan Fungsian Pengisi: Penilaian Akustik)
C.H.
HUANG1, C.W. LOU2, Y.C. CHUANG3, C.F. LIU4, Z.C. YU5,6 & J.H. LIN*3,7,8
1Department of Aerospace and Systems Engineering, Feng Chia
University, Taichung City 407,
Taiwan
2Institute of Biomedical Engineering and Materials Science, Central
Taiwan University of Science and Technology, Taichung 40601, Taiwan
3Laboratory of Fiber Application and Manufacturing, Department
of Fiber and Composite Materials
Feng Chia University, Taichung 40402, Taiwan
4Office of Physical Education and Sports Affairs, Feng Chia
University, Taichung 40402, Taiwan
5Functional Textile Materials Laboratory, School of Chemical
Engineering and Material Science
Eastern Liaoning University, 118003 Dandong, China
6School of Textiles, Tianjin Polytechnic University, 300387
Tianjin, China
7School of Chinese Medicine, China Medical University, Taichung
40402, Taiwan
8Department of Fashion Design, Asia University, Taichung
41354, Taiwan
Received: 14 June 2015/Accepted: 17 August 2015
ABSTRACT
Following rapid technological and industrial development,
factories have been equipped with a great deal of machines. The blend of
industrial and residential areas in turn resulted in many environmental
problems. In particular, machine operation causes noise pollution that easily
causes physiological and psychological discomfort for the human body thus makes
noise abatement a crucial and urgent issue. In this study, vermiculite
functional fillers were added to polyurethane (PU)
foam mixtures in order to form sound absorbent PU foams.
The correlations between the contents of functional fillers and the sound
absorption of flexible and rigid PU foams were then examined.
The optimal PU foams were combined with PET/carbon
fiber matrices in order to yield the electromagnetic shielding effectiveness.
The sound absorption, noise reduction coefficient (NRC),
electromagnetic shielding effectiveness and resilience rate of the composite
boards were finally evaluated. The test results indicated that rigid PU foam
composites can reach a sound absorption coefficient of 0.8 while the flexible PU foam
composites have higher mechanical properties.
Keywords: Functional fillers; noise reduction coefficient;
polyurethane (PU) foam; sound absorption coefficient
ABSTRAK
Berikutan perkembangan teknologi dan perindustrian yang pesat, kilang
telah dilengkapi dengan mesin yang banyak. Gabungan kawasan perindustrian
dan perumahan telah menyebabkan pelbagai masalah alam sekitar. Secara
khususnya, operasi mesin menghasilkan bunyi bising dan menyebabkan
rasa tidak selesa daripada segi fisiologi dan psikologi untuk tubuh
manusia dan ini menjadikan pengurangan bunyi bising suatu isu yang
sangat penting dan mendesak. Dalam kajian ini, vermikulit pengisi
berfungsi ditambah kepada campuran buih poliuretana (PU) untuk menghasilkan buih penyerap bunyi PU.
Korelasi antara kandungan pengisi berfungsi dan penyerapan bunyi
buih fleksibel dan tegar PU kemudian dikaji. Buih PU yang
optimum digabungkan dengan PET atau matriks genting karbon untuk
menghasilkan keberkesanan perisai elektromagnet. Penyerapan bunyi,
pekali pengurangan bunyi (NRC), keberkesanan perisai elektromagnetik
serta kadar ketahanan papan komposit akhirnya dinilai. Keputusan
ujian menunjukkan bahawa komposit buih PU tegar
boleh mencapai pekali bunyi penyerapan 0.8 sementara komposit buih
PU
fleksibel mempunyai sifat mekanik yang lebih tinggi.
Kata kunci: Pekali
mengurangkan hingar; pekali penyerapan bunyi; pengisi berfungsi; poliuretana (PU) buih
REFERENCES
Beranek, L.L. 1988. Noise and Vibration
Control. New York: McGraw Hill. p. 672.
Demharter, A. 1998. Polyurethane rigid foam, a
proven thermal insulating material for applications between +130°C and -196°C. Cryogenics 38: 113-117.
Huang, C.H., Lin, J.H. & Chuang, Y.C. 2014.
Manufacturing process and property evaluation of sound-absorbing and
thermal-insulating polyester fiber/polypropylene/thermoplastic polyurethane composite board. J. Ind. Text. 43: 627-640.
Huang, C.H. & Chuang, Y.C. 2013. The design and
optimization of nonwoven composite boards on sound absorption performance. Applied
Mechanics and Materials 365-366: 1217-1220.
Hung, T.C., Huang, J.S., Wang, Y.W. & Lin, K.Y. 2014.
Inorganic polymeric foam as a sound absorbing and insulating material. Constr.
Build Mater. 50: 328-334.
Lin, J.H., Li, T.T. & Lou, C.W. 2014a.
Puncture-resisting, sound-absorbing and thermal-insulating properties of
polypropylene-selvages reinforced composite nonwovens. J. Ind. Text.
doi: 10.1177/1528083714562088.
Lin, J.H., Li, T.T., Hsu, Y.H. & Lou, C.W. 2014b.
Preparation and property evaluation of sound-absorbing/thermal-insulating PU
composite boards with cushion protection. Fiber Polym. 15(7): 1478-1483.
Li, T.T., Chuang, Y.C., Huang, C.H., Lou, C.W. & Lin,
J.H. 2015. Applying vermiculite and perlite fillers to sound-absorbing/
thermal-insulating resilient PU foam composites. Fiber Polym. 16(3):
691-698.
Tai, K.C., Chen, P., Lin, C.W., Lou, C.W., Tan, H.M. &
Lin, J.H. 2010. Evaluation on the sound absorption and mechanical property of
the multi-layer needle-punching nonwoven. Advanced Materials Research 123-125:
475-478.
Yan, R.S., Wang, R., Lou, C.W. & Lin, J.H. 2014.
Manufacturing technique and acoustic evaluation of sandwich laminates
reinforced high-resilience inter/intra-ply hybrid composites. Fiber Polym. 15(10):
2201-2210.
Zhang, C.H., Li, J.Q., Hu, Z., Zhu, F.L. & Huang, Y.D.
2012. Correlation between the acoustic and porous cell morphology of
polyurethane foam: Effect of interconnected porosity. Mater. Design 41:
319-325.
Zoran, S.P., Ivan, J. & Vladimir, D. 1998. Structure and
physical properties of segmented polyurethane elastomers containing chemical
crosslinks in the hard segment. Journal of Polymer Science Part B: Polymer
Physics 36(2): 221-235.
*Corresponding
author; email: jhlin@fcu.edu.tw
|