Sains Malaysiana 44(12)(2015): 1757–1763

 

Rigid/Flexible Polyurethane Foam Composite Boards with Addition

of Functional Fillers: Acoustics Evaluations

(Buih Poliuretana Tegar/Fleksibel Papan Komposit dengan Penambahan Fungsian Pengisi: Penilaian Akustik)

 

C.H. HUANG1, C.W. LOU2, Y.C. CHUANG3, C.F. LIU4, Z.C. YU5,6 & J.H. LIN*3,7,8

 

1Department of Aerospace and Systems Engineering, Feng Chia University, Taichung City 407,

Taiwan

 

2Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan

 

3Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials

Feng Chia University, Taichung 40402, Taiwan

 

4Office of Physical Education and Sports Affairs, Feng Chia University, Taichung 40402, Taiwan

 

5Functional Textile Materials Laboratory, School of Chemical Engineering and Material Science

Eastern Liaoning University, 118003 Dandong, China

 

6School of Textiles, Tianjin Polytechnic University, 300387 Tianjin, China

 

7School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan

 

8Department of Fashion Design, Asia University, Taichung 41354, Taiwan

 

Received: 14 June 2015/Accepted: 17 August 2015

 

ABSTRACT

Following rapid technological and industrial development, factories have been equipped with a great deal of machines. The blend of industrial and residential areas in turn resulted in many environmental problems. In particular, machine operation causes noise pollution that easily causes physiological and psychological discomfort for the human body thus makes noise abatement a crucial and urgent issue. In this study, vermiculite functional fillers were added to polyurethane (PU) foam mixtures in order to form sound absorbent PU foams. The correlations between the contents of functional fillers and the sound absorption of flexible and rigid PU foams were then examined. The optimal PU foams were combined with PET/carbon fiber matrices in order to yield the electromagnetic shielding effectiveness. The sound absorption, noise reduction coefficient (NRC), electromagnetic shielding effectiveness and resilience rate of the composite boards were finally evaluated. The test results indicated that rigid PU foam composites can reach a sound absorption coefficient of 0.8 while the flexible PU foam composites have higher mechanical properties.

 

Keywords: Functional fillers; noise reduction coefficient; polyurethane (PU) foam; sound absorption coefficient

 

ABSTRAK

Berikutan perkembangan teknologi dan perindustrian yang pesat, kilang telah dilengkapi dengan mesin yang banyak. Gabungan kawasan perindustrian dan perumahan telah menyebabkan pelbagai masalah alam sekitar. Secara khususnya, operasi mesin menghasilkan bunyi bising dan menyebabkan rasa tidak selesa daripada segi fisiologi dan psikologi untuk tubuh manusia dan ini menjadikan pengurangan bunyi bising suatu isu yang sangat penting dan mendesak. Dalam kajian ini, vermikulit pengisi berfungsi ditambah kepada campuran buih poliuretana (PU) untuk menghasilkan buih penyerap bunyi PU. Korelasi antara kandungan pengisi berfungsi dan penyerapan bunyi buih fleksibel dan tegar PU kemudian dikaji. Buih PU yang optimum digabungkan dengan PET atau matriks genting karbon untuk menghasilkan keberkesanan perisai elektromagnet. Penyerapan bunyi, pekali pengurangan bunyi (NRC), keberkesanan perisai elektromagnetik serta kadar ketahanan papan komposit akhirnya dinilai. Keputusan ujian menunjukkan bahawa komposit buih PU tegar boleh mencapai pekali bunyi penyerapan 0.8 sementara komposit buih PU fleksibel mempunyai sifat mekanik yang lebih tinggi.

 

Kata kunci: Pekali mengurangkan hingar; pekali penyerapan bunyi; pengisi berfungsi; poliuretana (PU) buih

REFERENCES

Beranek, L.L. 1988. Noise and Vibration Control. New York: McGraw Hill. p. 672.

Demharter, A. 1998. Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and -196°C. Cryogenics 38: 113-117.

Huang, C.H., Lin, J.H. & Chuang, Y.C. 2014. Manufacturing process and property evaluation of sound-absorbing and thermal-insulating polyester fiber/polypropylene/thermoplastic polyurethane composite board. J. Ind. Text. 43: 627-640.

Huang, C.H. & Chuang, Y.C. 2013. The design and optimization of nonwoven composite boards on sound absorption performance. Applied Mechanics and Materials 365-366: 1217-1220.

Hung, T.C., Huang, J.S., Wang, Y.W. & Lin, K.Y. 2014. Inorganic polymeric foam as a sound absorbing and insulating material. Constr. Build Mater. 50: 328-334.

Lin, J.H., Li, T.T. & Lou, C.W. 2014a. Puncture-resisting, sound-absorbing and thermal-insulating properties of polypropylene-selvages reinforced composite nonwovens. J. Ind. Text. doi: 10.1177/1528083714562088.

Lin, J.H., Li, T.T., Hsu, Y.H. & Lou, C.W. 2014b. Preparation and property evaluation of sound-absorbing/thermal-insulating PU composite boards with cushion protection. Fiber Polym. 15(7): 1478-1483.

Li, T.T., Chuang, Y.C., Huang, C.H., Lou, C.W. & Lin, J.H. 2015. Applying vermiculite and perlite fillers to sound-absorbing/ thermal-insulating resilient PU foam composites. Fiber Polym. 16(3): 691-698.

Tai, K.C., Chen, P., Lin, C.W., Lou, C.W., Tan, H.M. & Lin, J.H. 2010. Evaluation on the sound absorption and mechanical property of the multi-layer needle-punching nonwoven. Advanced Materials Research 123-125: 475-478.

Yan, R.S., Wang, R., Lou, C.W. & Lin, J.H. 2014. Manufacturing technique and acoustic evaluation of sandwich laminates reinforced high-resilience inter/intra-ply hybrid composites. Fiber Polym. 15(10): 2201-2210.

Zhang, C.H., Li, J.Q., Hu, Z., Zhu, F.L. & Huang, Y.D. 2012. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Mater. Design 41: 319-325.

Zoran, S.P., Ivan, J. & Vladimir, D. 1998. Structure and physical properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment. Journal of Polymer Science Part B: Polymer Physics 36(2): 221-235.

 

*Corresponding author; email: jhlin@fcu.edu.tw

 

 

previous