Sains Malaysiana 44(1)(2015): 147–153
Threshold Criteria for Incipient Grain Motion with Turbulent
Fluctuations on a
Horizontal Bed
(Kriteria Pergerakan Ambang Butiran
oleh Fluktuasi Gelora
di atas Dasar
Mendatar)
W.H.M. WAN MOHTAR*
Department
of Civil & Structural Engineering, Faculty of Engineering and Built
Environment
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Received: 23 September
2013/Accepted: 31 May 2014
ABSTRACT
The effect of turbulent fluctuations
on the threshold criteria for incipient grain motion over a wide range of
sediment size is investigated. In this work, attention is paid to the
comparison of the critical Shields parameter θc profile obtained when the near-bed
fluid forces induced sediment motion are oscillating-grid turbulence and a
single idealised eddy of vortex ring. For experimental work, near-spherical
monodisperse sediments were used throughout with relative densities of 1.2 and
2.5 and mean diameters d ranging between 80 and 1087 μm. The
measured values of θc on a horizontal bed α
= 0 (hence denoted as θc0),
were compared to the θc0 profiles obtained by grid turbulence and vortex ring experiments. Although
different in magnitude, the θc0 profiles were comparable, that
is the θc0 were seen to increase
monotonically for hydraulically smooth bedforms and to be approximately
constant for hydraulically rough bedforms. However the limit of hydraulically
smooth region was found to vary between the oscillating-grid turbulence
experiments, where wider smooth region was found when the turbulent
fluctuations used to calculate θc0 is not the near-bed velocity.
Keywords: Hydraulically smooth;
incipient grain motion; oscillating-grid turbulence; rough bedforms; vortex
ring
ABSTRAK
Kajian ini
melihat kesan bentukan gelora ke atas kriteria nilai pergerakan ambang butiran
pada satu julat saiz sedimen. Fokus kajian
adalah perbandingan profil parameter kritikal Shields θc apabila daya bendalir
dekat-dasar bagi sedimen bergerak teraruh oleh turbulens grid-berayun dan
pusaran tunggal terunggul cincin vorteks. Uji kaji dilakukan ke atas
sedimen seragam berbentuk hampir-sfera dengan ketumpatan relatif sedimen adalah
1.2 dan 2.5 dan diameter purata d adalah antara julat 80 dan 1087
μm. Nilai terukur θc pada dasar mendatar α
= 0 (dengan itu ditandakan sebagai θc0)
dibandingkan dengan profil diperoleh bagi kedua-dua eksperimen turbulens
grid-berayun dan cincin vorteks. Walaupun nilai terukur berbeza daripada segi
magnitud, profil θc0 bagi kedua-dua uji kaji adalah
sebanding, iaitu θc0 bertambah secara ekanada bagi
bentuk dasar kelicinan hidraulik dan hampir malar bagi bentuk dasar kekasaran
hidraulik. Namun begitu, batasan kawasan kelicinan hidraulik didapati berubah
bagi eksperimen grid-berayun dengan daerah kelicinan didapati lebih lebar
apabila bentukan gelora diguna pakai untuk mengira θc0 bukan halaju hampir-dasar.
Kata kunci: Bentuk dasar kekasaran; cincin vorteks; kelicinan
hidraulik; pergerakan ambang butiran; turbulens grid-berayun
REFERENCES
Aronson, D., Johansson, A. & Lofdahl, L. 1997. Shear-free turbulence near a wall. J. Fluid Mech.
338: 363-385.
Bellinsky, M., Rubin, H., Agnon, Y., Kit, E. & Atkinson, J.
2005. Characteristics of resuspension, settling and
diffusion of particulate matter in a water column. Env. Fluid. Mech.
5: 415-441.
Bodart, J.,
Cazalbou, J. & Joly, L. 2010. Direct numerical simulation of unsheared
turbulence diffusing toward a free-slip or no-slip surface. J. Turbulence.
11: 1-17.
Buffington,
J.M. & Montgomery, D. 1997. A systematic analysis of
eight decades of incipient motion studies, with special reference to
gravel-bedded rivers. Water Res. 33: 1993-2029.
Camenen, B. & Larson, M. 2005. A general formula for
non-cohesive bed load sediment transport. Est. Coast. and Shelf Sci. 63: 249-260.
Cheng, N.S. & Law, A.W.K. 2007. Measurements of
turbulence generated by oscillating grid. J. Hyd. Eng. 127: 201-207.
Fernando, H.J.S. &
DeSilva, I.P.D.D. 1993. Note on secondary flows in oscillating-grid, mixing-box
experiments. Phys. Fluids 5: 1849-1851.
Hopfinger, E.J. &
Toly, J.A. 1976. Spatially decaying turbulence and its relation to mixing
across density interfaces. J. Fluid Mech. 78: 155-175.
Kaftori, D., Hetsroni,
G. & Banerjee, S. 1995. Particle behavior in the
turbulent boundary layer. i. motion, deposition
and entrainment. Phys. Fluids 7: 1095-1105.
Lamb,
M.P., Dietrich, W.E. & Venditti, J.G. 2008. Is the critical shields
stress for incipient sediment motion dependent on channel-bed slope? J.
Geophys. Res. 113: 1-20.
Mantz, P. 1977. Incipient transport of fine grains and flakes by fluids-extended
shields diagram. J. Hydr. Div. 103: 601-615.
McLean, S. 1994.
Turbulence structure over two-dimensional bed forms: Implications for sediment
transport. J. Geoph. 99: 729-747.
Medina, P. 2002. Start
of sediment motion and resuspension in turbulent ows: Applications of zero-mean
ow grid stirred turbulence on sediment studies. PhD Thesis. Universidad Polit´ecnica
de Catalu˜na (Unpublished).
Munro, R.J. 2012. The
interaction of a vortex ring with a sloped sediment layer: Critical criteria
for incipient grain motion. Phys. Fluids 24: 026604.
Munro,
R.J., Bethke, N. & Dalziel, S.B. 2009. Sediment resuspension
and erosion by vortex rings. Phys. Fluids 21: 1-16.
Ni˜no, Y. & Garcia,
M.H. 1996. Experiments on particle-turbulence interactions in the near-wall
region of an open channel flow: Implications for sediment transport. J.
Fluid Mech. 326: 285-319.
Paintal,
A. 1971. Concept of critical shear stress in loose boundary open
channels. J. Hydr. Res. 9: 91-113.
Perot, B. & Moin, P.
1995. Shear-free turbulent boundary layers. part 1. Physical insights into near-wall turbulence. J. Fluid
Mech. 295: 199-227.
Phillips, M. 1980. A force balance model for particle entrainment into a fluid stream. J. Phys. D: App. Phys. 13: 221-233.
Schmeeckle,
M., Nelson, J. & Shreve, R. 2007. Forces on stationary particles in near-bed
turbulent flows. J. Geophys. Res. 112: F02003.
Shields, A. 1936. Application of similarity principles and turbulence research in
bed-load movement. In Hydrodyna- Mics Laboratory Publ. no. 167, edited
by Ott, W.P. & van Uchelen, J.C. US Dept of Agr., Soil Conservation Service Cooperative Library, California Institute of
Technology, Pasadena, Calif.
Shvidchenko, A.B. &
Pander, G. 2000. Flume study of the effect of relative depth
on the incipient motion of coarse uniform sediments. Water Res. 36:
619-628.
Vanoni,
V. 1975. Sedimentation Engineering. American Society of Civil
Engineers Publications.
Voropayev, S. &
Fernando, H.J.S. 1996. Propagation of grid turbulence in
homegeneous fluids. Phys. Fluids 8: 2435-2440.
Wan Mohtar, W.H.M. &
Munro, R.J. 2013. Threshold criteria for incipient sediment motion on an
inclined bedform in the presence of oscillating-grid turbulence. Phys.
Fluids 25: 015103.
White, S.J. 1970. Plane
bed tresholds for fine grained sediments. Nature 228: 152-153.
Wu,
B., Maren, D. & Li, L. 2008. Predictability of sediment transport in the
yellow river using selected transport formula. Int. J. Sed. Res. 23:
283-298.
*Corresponding author; email: hanna@ukm.edu.my
|