Sains Malaysiana 44(1)(2015):
75–81
Quantifying
the Relative Importance of Climate and Habitat on Structuring the Species and
Taxonomic Diversity of Aquatic Plants in a Biodiversity Hotspot of Tropical
Asia
(Mengukur Kepentingan
Relatif Iklim dan
Habitat Terakhir Penstrukturan Spesies dan Kepelbagaian
Taksonomi Tumbuhan Akuatik
di Bintik Panas
Kepelbagaian Biologi Asia Tropika)
YOUHUA CHEN*
Department of Renewable Resources, University of Alberta,
Edmonton, T6G 2H1
Canada
Received: 13 February 2014/Accepted: 3 July 2014
ABSTRACT
It has not been well known how climate and habitat variables will
influence the distribution of plant species to some extents at mesoscales. In
this report, by using the distribution of aquatic plants in Western Ghats, a
biodiversity hotspot in tropical Asian region, I quantify the relative
importance of climate and habitat variables on structuring spatially species
richness and taxonomic diversity patterns using structural equation modeling.
All the sampling qudrats in the region used for the
study has a spatial resolution of 0.5 latitude × 0.5 longitude. The
results showed that species richness is high in both northern and southern part
of the region, while low in the middle part. In contrast, taxonomic
distinctiveness is relatively homogeneous over all the sampling quadrats in the
region. Structural equation modeling suggested that taxonomic distinctiveness
patterns of aquatic plants in the region follow temperature (partial regression
coefficient=0.31, p<0.05) and elevational (partial regression coefficient=0.31, p<0.05)
gradients, while richness patterns cannot be explained by any of the currently
used variables. In conclusion, environmental variables that are related to
taxonomic distinctiveness would not be related to richness, given the fact that
these two quantities are orthogonal more or less. Both climate and habitat are
equally influential on taxonomic distinctiveness patterns for aquatic plants in
Western Ghats of India.
Keywords: Climatic envelope; environmental correlation; Linnaeus
classification; WorldClim database
ABSTRAK
Masih belum diketahui bagaimanakah pemboleh ubah iklim dan habitat
akan mempengaruhi taburan spesies tumbuhan mengikut skalameso. Dalam
laporan ini, dengan menggunakan taburan tumbuhan akuatik di Barat
Ghats yang merupakan titik panas kepelbagaian biologi di rantau
Asia tropika, saya menentukan kepentingan pemboleh ubah iklim dan
habitat terakhir penstrukturan reruang kekayaan spesies dan taksonomi
kepelbagaian corak menggunakan pemodelan persamaan struktur. Semua
sampel quadrat yang digunakan untuk kajian di rantau ini mempunyai
resolusi reruang 0.5 latitud × longitud 0.5. Hasil kajian
menunjukkan bahawa kekayaan spesies adalah tinggi di bahagian utara
dan selatan rantau ini, manakala rendah di bahagian tengah. Sebaliknya,
perbezaan taksonomi adalah agak seragam ke atas semua sampel quadrat
di rantau ini. Pemodelan persamaan struktur mencadangkan bahawa
pola perbezaan taksonomi tumbuhan akuatik di rantau ini mengikut
suhu (pekali regresi separa = 0.31, p<0.05) dan ketinggian (pekali regresi separa
= 0.31, p<0.05) kecerunan, manakala pola kekayaan tidak
dapat dijelaskan oleh mana-mana pemboleh ubah yang sedang digunakan.
Kesimpulannya, pemboleh ubah alam sekitar yang berkaitan dengan
perbezaan taksonomi tidak berkaitan dengan kekayaan, memandangkan
kuantiti kedua-duanya adalah lebih atau kurang ortogon. Kedua-dua
iklim dan habitat mempengaruhi pola perbezaan taksonomi untuk tumbuhan
akuatik di Barat Ghats India.
Kata kunci:
Iklim sampul;
korelasi alam sekitar; pangkalan
data WorldClim; pengelasan Linnaeus
REFERENCES
Arhonditsis, G., Stow, C., Steinberg, L., Kenney, M., Lathrop, R., McBride,
S. & Recknow, K. 2006. Exploring ecological patterns with structural equation modeling
and Bayesian analysis. Ecological Modelling 192: 385-409.
Beier, P. 2012. Conceptualizing and designing corridors for climate change. Ecological Restoration 30: 312-319.
Bevilacque, S., Sandulli,
R., Plicanti, A. & Terlizzi,
A. 2012. Taxonomic
distinctness in Mediterranean marine nematodes and its relevance for
environmental impact assessment. Marine Pollution Bulletin 64:
1409-1416.
Borcard, D., Legendre, P. & Drapeau,
P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045.
Clarke, K. & Warwick, R. 2001. A further biodiversity
index applicable to species lists: Variation in taxonomic distinctness. Marine
Ecology Progress Series 216: 265-278.
Clarke, K. & Warwick, R. 1999. The taxonomic
distinctness measure of biodiversity: Weighting of step lengths between
hierarchical levels. Marine Ecology Progress Series 184: 21-29.
Clarke, K. & Warwick, R. 1998. A
taxonomic distinctness index and its statistical properties. Journal
of Applied Ecology 35: 523-531.
Forest, F., Grenyer, R., Rouget, M., Davies, T.J., Cowling, R.M., Faith, D.P., Balmford, A., Manning, J.C., Procheş,
S., van der Bank, M., Reeves, G., Hedderson, T.A.J.
& Savolainen, V. 2007. Preserving the
evolutionary potential of floras in biodiversity hotspots. Nature 445:
757-760.
Haddad, N. 2008. Finding the corridor more traveled. PNAS 105:
19569-19570.
He, T. 2013. Structural equation modelling analysis of
evolutionary and ecological patterns in Australian Banksia. Population Ecology 55: 461-467.
Huang, J., Chen, B., Liu, C., Lai, J.,
Zhang, J. & Ma, K. 2012. Identifying hotspots of endmeic woody seed plant
diversity in China. Diversity and Distributions 18: 673-688.
Keith, M., Chimimba,
C., Reyers, B. & van Jaarsveld,
A. 2005. Taxonomic and phylogenetic
distinctiveness in regional conservation assessments: A case study based on
extant South African Chiroptera and Carnivora. Animal Conservation 8: 279-288.
Lam, T. & Maguire, D. 2012. Structural equation
modeling: Theory and applications in forest management. International
Journal of Forestry Research 2012: 263953.
Legendre, P. 2007. Studying beta diversity: Ecological
variation partitioning by multiple regression and canonical analysis. Journal
of Plant Ecology 1: 3-8.
Legendre, P., Mi,
X., Ren, H., Ma, K., Yu, M., Sun, I.F. & He, F. 2009. Partitioning beta diversity in a subtropical broad-leaved
forest of China. Ecology 90: 663-674.
Leonard, D., Clarke, K., Somerfield, P.
& Warwick, R. 2006. The application of
an indicator based on taxonomic distinctness for UK marine biodiversity
assessments. Journal of Environment Management 78: 52-62.
Lindenmayer, D. & Nix, H. 1993. Ecological
principles for the design of wildlife corridors. Conservation Biology 7: 627-631.
Lindo, Z. & Winchester, N.N. 2009. Spatial and environmental
factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160: 817-25.
Liu, H., Edwards, E., Freckleton, R. & Osborne, C. 2012. Phylogenetic niche conservatism in C4 grasses. Oecologia 170: 835-845.
Losos, J. 2008. Phylogenetic niche
conservatism, phylogenetic signal and the relationship between phylogenetic
relatedness and ecological similarity among species. Ecology Letters 11:
995-1003.
McClanahan, T., Maina,
J. & Muthiga, N. 2011. Associations between climate stress and
coral reef diversity in the western Indian Ocean. Global Change
Biology 17: 2023-2032.
Myers, N., Mittermeier,
R., Mittermeier, C., da Fonseca, G. & Kent, J.
2000. Biodiversity
hotspots for conservation priorities. Nature 403: 853-858.
Pavao-Zuckerman, M. & Coleman, D. 2007. Urbanization alters the functional composition, but not
taxonomic diversity, of the soil nematode community. Applied Soil Ecology 35:
329-339.
Perez-Losada,
M. & Crandall, A. 2003. Can
taxonomic richness be used as a surrogate for phylogenetic distinctness indices
for ranking areas for conservation? Animal Biodiversity and Conservation 26:
77-84.
Pienkowski, M., Watkinson, A., Kerby, G., Warwick, R. & Clarke, K. 1998. Taxonomic distinctness and environment
assessment. Journal of Applied Ecology 35: 532-543.
Qian, H. 2014. Contrasting relationships between clade age
and temperature along latitudinal versus elevational gradients for woody angiosperms in forests of South America. Journal of
Vegetation Science: DOI: 10.1111/jvs.12175.
Qian, H. 2007. Relationships between plant
and animal species richness at a regional scale in China. Conservation
Biology 21: 937-944.
Qian, H. & Kissling, W. 2010. Spatial scale and cross-taxon congruence of terrestrial vertebrate
and vascular plant species richness in China. Ecology 91:
1172-1183.
Qian, H., Kissling, W., Wang, X.
& Andrews, P. 2009. Effects of woody plant species
richness on mammal species richness in southern Africa. Journal of
Biogeography 36: 1685-1697.
R Development Core Team. 2013. R: A Language and Environment for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Reich, P., Bakken, P., Carlson, D., Frelich, L., Friedman, S. & Grigal,
D. 2001. Influence of logging, fire, and forest
type on biodiversity and productivity in southern boreal forests. Ecology 82:
2731-2748.
Rosseel, Y. 2012. lavaan:
An R package for structural equation modeling. Journal of Statistical
Software 48: 1-36.
Schweiger, O., Klotz, S., Durka,
W. & Kuhn, I. 2008. A
comparative test of phylogenetic diversity indices. Oecologia 157: 485-495.
Wang, Z. & Chen, Y. 2009. Relationship between taxonomic
distinctness and environmental stress in terrestrial organisms at large spatial
scale: A study for insect family Ceratopogonidae in
East Asia. Acta Zoologica Bulgarica61: 69-77.
Wiens, J. 2004. Speciation and ecology revisited: Phylogenetic
niche conservatism and the origin of species. Evolution 58: 193-197.
Williams, P., Gibbons, D., Margules, C., Rebelo, A.,
Humphries, C. & Pressey, R. 1996. A comparison of richness hotspots, rarity
hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology 10: 155-174.
*Corresponding
author; email: youhua@ualberta.ca
|