Sains Malaysiana 44(3)(2015): 387–397
Monthly
Variability of Chlorophyll-α Concentration in Persian Gulf Using Remote
Sensing Techniques
(Kevariabelan Bulanan Kepekatan Klorofil-α di Teluk Parsi Menggunakan
Teknik Penderiaan Jarak Jauh)
MOSLEM SHARIFINIA1*, MOHAMMADREZA MOHAMMADPOUR PENCHAH2,
ABBAS MAHMOUDIFARD3, ABOLHASAN GHEIBI4 & ROHALLAH ZARE4
1Young Researchers and Elite
Club, Rasht Branch, Islamic Azad University, Rasht, Iran
2Young Researchers and Elite
Club, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
3Faculty of Natural
Resources, University of Guilan, P.O. Box: 1144, Sowmehsara, Iran
4Faculty of Science,
Hormozgan University, P.O. Box: 3995, Bandar Abbas, Iran
Received: 13 August 2014/Accepted: 19 October 2014
ABSTRACT
During the last two decades, large-scale high biomass algal blooms
of the dinoflagellate Cochlodinium have occurred frequently. Prior to
1990, blooms had been primarily reported in Southeast Asia. Since
then, time blooms have expanded across Asia, Europe and North American.
A multi-spectral classification and quantification technique is
developed for estimating chlorophyll-α concentrations. In this
study, we explored the use of Sea-viewing Wide Field of-view Sensor
(SeaWiFS) satellite data in studying the spatio-temporal changes
in chlorophyll-α concentration in Persian Gulf. In addition,
the present study focuses on the temperature, dissolved oxygen,
salinity, pH and nutrient concentrations during the red tide phenomenon.
The resultant chlorophyll-α concentration images derived from
SeaWiFS satellite data give an indication of the monthly spatial
variation in chlorophyll-α concentration from 2008 to 2009.
Variability of chlorophyll-α plot from September 2008 to May
2009 in Persian Gulf showed that September 2008 had the lowest value
(1.57±0.14 mg m-3) than other years except
May 2009, then tended to increase up to January 2009 (Highest value:
7.47±1.67mg m-3),
then a slow decrease up to May 2009. The result showed all water
physicochemical parameters measurement in-situ (DO and pH)
and ex-situ (NO3
and PO4),
were varied among the different months. The highest and lowest values
of these parameters were recorded in September 2008 and May 2009,
respectively. After occurrence of the red tide, nutrient concentration
(NO3 and PO4), dissolved oxygen and
pH were reduce compared to before this phenomenon. Compare mean
between various months' showed significant differences for temperature
records among the months of study (p≤0.05). Lowest and highest
temperature recorded were in February
2009 and September 2008, respectively, but no significant differences
were found in salinity (p≥0.05). This study showed that SeaWiFS
satellite data provide useful information on the spatio-temporal
variations in Persian Gulf, which is useful in establishing general
trends that are more difficult to determine through routine ground
measurements.
Keywords: Bloom; chlorophyll-α; fish mortality; Persian Gulf;
SeaWiFS
ABSTRAK
Sepanjang dua dekad yang lalu, ledakan alga biojisim berskala dinoflagellate
Cochlodinium
telah berlaku dengan kerap. Sebelum tahun 1990,
ledakan selalunya dilaporkan di Asia Tenggara. Sejak
itu, masa ledakan telah merebak ke seluruh Asia, Eropah dan Amerika
utara.
Pengelasan pelbagai tatacara dan teknik mengkuantifikasi dibangunkan
untuk menganggar kepekatan klorofil-α. Dalam kajian ini, kami mengkaji penggunaan sensor pandangan laut
bidang luas pandangan (SeaWiFS) data satelit dalam mengkaji perubahan
spatio-temporal dalam kepekatan klorofil-α di Teluk Parsi.
Di samping itu, kajian ini tertumpu kepada suhu, oksigen terlarut,
kemasinan, kepekatan pH dan nutrien semasa fenomena pasang-surut
merah. Kepekatan klorofil-α imej terhasil yang diperoleh daripada
SeaWiFS data satelit memberi petunjuk variasi bulanan reruang dalam
kepekatan klorofil-α dari 2008 ke 2009. Kebolehubahan
plot klorofil-α dari September 2008 hingga Mei 2009 di Teluk
Parsi menunjukkan bulan September 2008 mempunyai nilai terendah
(1.57±0.14 mg m-3) berbanding tahun lain
kecuali Mei 2009 yang kemudian terus meningkat sehingga Januari
2009 (nilai tertinggi 7.47±1.67 mg m-3), selepas itu penurunan perlahan sehingga
ke Mei 2009. Hasil kajian menunjukkan semua
pengukuran parameter fizikokimia air in-situ (DO dan pH) dan ex-situ (NO3 dan PO4) adalah berbeza-beza antara
bulan. Nilai parameter tertinggi dan
terendah ini direkodkan masing-masing pada bulan September 2008
dan Mei 2009. Selepas kejadian pasang-surut merah, nutrien kepekatan (NO3 dan
PO4),
oksigen terlarut dan pH berkurangan berbanding sebelum fenomena
ini. Min bandingan antara bulan menunjukkan perbezaan yang signifikan
untuk rekod suhu antara bulan kajian (p≤0.05). Suhu
terendah dan tertinggi masing-masing direkod pada Februari 2009
dan September 2008, tetapi tiada perbezaan yang bererti untuk kemasinan
(p≥0.05). Kajian ini menunjukkan data satelit SeaWiFS memberikan maklumat
berguna tentang variasi spatio-temporal di Teluk Parsi dalam mewujudkan
trend umum yang lebih sukar untuk ditentukan melalui pengukuran
tanah rutin.
Kata kunci: Kematian ikan;
klorofil-α; ledakan; SeaWiFS; Teluk Parsi
REFERENCES
Banse, K. 1997. Irregular flow of Persian
(Arabian) Gulf water to the Arabian sea. Journal of
Marine Research 55: 1049-1067.
Binding, C., Greenberg, T.
& Bukata, R. 2012. An analysis of MODIS-derived algal and mineral turbidity in Lake
Erie. Journal of Great Lakes Research 38: 107-116.
Cannizzaro, J.P. & Carder, K.L. 2006.
Estimating chlorophyll-α concentrations from remote-sensing reflectance in
optically shallow waters. Remote Sensing of Environment 101: 13-24.
Dall’Olmo, G., Gitelson,
A.A., Rundquist, D.C., Leavitt, B., Barrow, T. & Holz, J.C. 2005. Assessing the potential of SeaWiFS and MODIS
for estimating chlorophyll concentration in turbid productive waters using red
and near-infrared bands. Remote Sensing of Environment 96: 176-187.
Ekstrand, S. 1992. Landsat TM based
quantification of chlorophyll-α during algae blooms in coastal waters. International
Journal of Remote Sensing 13: 1913-1926.
Emery, K.O. 1956. Sediments and water of
Persian Gulf. AAPG Bulletin 40: 2354-2383.
Fatemi, S., Nabavi, S.,
Vosoghi, G., Fallahi, M. & Mohammadi, M. 2012. The relation between
environmental parameters of Hormuzgan coastline in Persian Gulf and occurrence
of the first harmful algal bloom of Cochlodinium polykrikoides (Gymnodiniaceae). Iranian Journal of Fisheries Sciences 11: 475-489.
Fisheries Statistical
Yearbook, I.W. 2009. Fisheries Administration, Council of Agriculture, Executive Tehran. 113.
Gannon, D.P., McCabe, E.B., Camilleri, S.A.,
Gannon, J.G., Brueggen, M.K., Barleycorn, A.A., Palubok, V.I., Kirkpatrick,
G.J. & Wells, R.S. 2009. Effects of Karenia brevis harmful algal blooms on
nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378:
171-186.
Gitelson, A.A., Gurlin, D.,
Moses, W.J. & Barrow, T. 2009. A bio-optical algorithm for the remote
estimation of the chlorophyll-a concentration in case 2 waters. Environmental
Research Letters 4: 045003.
Glibert, P. & Burkholder, J. 2006. The complex relationships between increases in fertilization of the
earth, coastal eutrophication and proliferation of harmful algal blooms. Ecology of Harmful Algae 189: 341-354.
Glibert, P.M., Anderson,
D.M., Gentien, P., Graneli, E. & Sellner, K.G. 2005. The global, complex phenomena
of harmful algal blooms. Oceanography 18(2): 136-147.
Gobler, C.J., Berry, D.L., Anderson, O.R.,
Burson, A., Koch, F., Rodgers, B.S., Moore, L.K., Goleski, J.A., Allam, B.
& Bowser, P. 2008. Characterization, dynamics, and ecological impacts of
harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY,
USA. Harmful Algae 7: 293-307.
Gordoa, A., Illas, X., Cruzado, A. &
Velásques, Z. 2008. Spatio-temporal patterns in the north-western Mediterranean
from MERIS derived chlorophyll-α concentration. Scientia Marina 72:
757-767.
Guinehut, S., Dhomps, A.L.,
Larnicol, G. & Le Traon, P.Y. 2012 High resolution 3-D temperature and
salinity fields derived from in-situ and satellite observations. Ocean
Science 8: 845-857.
Iwataki, M., Kawami,
H., Mizushima, K., Mikulski, C.M., Doucette, G.J., Relox Jr, J.R., Anton, A.,
Fukuyo, Y. & Matsuoka, K. 2008. Phylogenetic relationships in the harmful
dinoflagellate Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae)
inferred from LSU rDNA sequences. Harmful Algae 7: 271-277.
John, V.C. 1992. Harmonic tidal current constituents of the
western Arabian Gulf from moored current measurements. Coastal Engineering 17:
145-151.
Kim, D.I., Matsuyama, Y., Nagasoe, S.,
Yamaguchi, M., Yoon, Y.H., Oshima, Y., Imada, N. & Honjo, T. 2004. Effects of temperature, salinity and
irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium
polykrikoides Margalef (Dinophyceae). Journal of Plankton
Research 26: 61-66.
Kudela, R.M. & Gobler, C.J. 2012. Harmful dinoflagellate
blooms caused by Cochlodinium sp.: Global expansion and ecological strategies
facilitating bloom formation. Harmful Algae 14: 71-86.
Kuwae, T., Kamio, K., Inoue, T.,
Miyoshi, E. & Uchiyama, Y. 2006. Oxygen
exchange flux between sediment and water in an intertidal sandflat, measured in-situ by the eddy-correlation method. Marine Ecology Progress Series 307:
59-68.
Larnicol, G., Guinehut, S., Rio, M.,
Drevillon, M., Faugere, Y. & Nicolas, G. 2006. The Global Observed Ocean Products of the French
Mercator Project. https://earth.esa.int.
Lee, Y.S. & Lee, S.Y. 2006. Factors affecting outbreaks
of Cochlodinium polykrikoides blooms in coastal areas of Korea. Marine
Pollution Bulletin 52: 626-634.
Lloyd, D.S. 1987. Turbidity as a water
quality standard for salmonid habitats in Alaska. North American
Journal of Fisheries Management 7: 34-45.
Longhurst, A., Sathyendranath, S.,
Platt, T. & Caverhill, C. 1995. An estimate of global primary production in the ocean from
satellite radiometer data. Journal of Plankton Research 17:
1245-1271.
Marcella, M.P. & Eltahir, E.A. 2008. The hydroclimatology
of Kuwait: Explaining the variability of rainfall at seasonal and interannual
time scales. Journal of Hydrometeorology 9(5): .
Matsuoka, K., Mizuno, A., Iwataki, M.,
Takano, Y., Yamatogi, T., Yoon, Y.H. & Lee, J.B. 2010. Seed populations of a harmful unarmored dinoflagellate Cochlodinium
polykrikoides Margalef in the East China Sea. Harmful Algae 9:
548-556.
Michael Reynolds, R. 1993. Physical
oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from
the Mt Mitchell expedition. Marine Pollution Bulletin 27: 35-59.
Morse, R.E., Shen, J., Blanco-Garcia,
J.L., Hunley, W.S., Fentress, S., Wiggins, M. & Mulholland, M.R. 2011. Environmental and physical controls on the formation and
transport of blooms of the dinoflagellate Cochlodinium polykrikoides Margalef
in the lower Chesapeake Bay and its tributaries. Estuaries and Coasts 34:
1006-1025.
Mulet, S., Rio, M.H., Mignot, A.,
Guinehut, S. & Morrow, R. 2012. A new estimate of the global 3D geostrophic ocean circulation based
on satellite data and in-situ measurements. Deep Sea Research
Part II: Topical Studies in Oceanography 77: 70-81.
Mulholland, M.R., Morse, R.E., Boneillo, G.E., Bernhardt,
P.W., Filippino, K.C., Procise, L.A., Blanco-Garcia, J.L., Marshall, H.G.,
Egerton, T.A. & Hunley, W.S. 2009. Understanding causes and impacts of the
dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake
Bay. Estuaries and Coasts 32: 734-747.
Nagai, S., Nishitani, G., Takano, Y.,
Yoshida, M. & Takayama, H. 2009. Encystment and excystment under laboratory conditions of the nontoxic
dinoflagellate Alexandrium fraterculus (Dinophyceae) isolated from the Seto
Inland Sea, Japan. Phycologia 48: 177-185.
Namin, J.I., Sharifinia, M. & Makrani, A.B. 2013. Assessment of fish farm effluents on macroinvertebrates based on
biological indices in Tajan River (north Iran). Caspian J. Env. Sci. 11:
29-39.
Ndungu, J., Monger, B.C., Augustijn, D.C., Hulscher, S.J.,
Kitaka, N. & Mathooko, J.M. 2013. Evaluation of spatio-temporal variations
in chlorophyll-α in Lake Naivasha, Kenya: remote-sensing approach. International
Journal of Remote Sensing 34: 8142-8155.
Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Subba Rao,
D. & Ignatov, A.M. 2010. Satellite monitoring of climatic factors
regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal
of Marine Systems 82: 47-60.
O’Reilly, J.E., Maritorena, S., Siegel, D.A., O’Brien, M.C.,
Toole, D., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P. & Cota, G.F.
2000. Ocean color chlorophyll-α algorithms for SeaWiFS, OC2, and OC4:
Version 4. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3:
9-23.
Prasad, T., Ikeda, M. & Kumar, S.P.
2001. Seasonal spreading
of the Persian Gulf Water mass in the Arabian Sea. Journal of
Geophysical Research: Oceans (1978–2012) 106: 17059- 17071.
Purser, B. & Seibold, E. 1973. The principal environmental factors influencing Holocene
sedimentation and diagenesis in the Persian Gulf. The
Persian Gulf pp. 1-9. Springer.
Rao, S. & Al-Yamani, F. 1998. Phytoplankton ecology in the waters between Shatt Al-Arab
and Straits of Hormuz, Arabian Gulf: A review. Plankton Biology and Ecology 45:
101-116.
Richlen, M.L., Morton, S.L., Jamali, E.A., Rajan, A. &
Anderson, D.M. 2010. The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and
phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9: 163-172.
Scheffer, M. 1999. The effect of aquatic vegetation on
turbidity; how important are the filter feeders? Hydrobiologia 408- 409:
307-316.
Sharifinia, M., Namin, J.I. &
Makrani, A.B. 2012. Benthic
macroinvertabrate distribution in Tajan River using canonical correspondence
analysis. Caspian J. Env. Sci. 10: 181-194.
Stumpf, R., Culver, M., Tester, P.,
Tomlinson, M., Kirkpatrick, G., Pederson, B., Truby, E., Ransibrahmanakul, V.
& Soracco, M. 2003. Monitoring Karenia
brevis blooms in the Gulf of Mexico using satellite ocean color imagery and
other data. Harmful Algae 2: 147-160.
Swift, S.A. & Bower, A.S. 2003. Formation
and circulation of dense water in the Persian/Arabian Gulf. Journal
of Geophysical Research: Oceans (1978-2012) 108: 4-1-4-21.
Tester, P.A. & Steidinger, K.A.
1997. Gymnodinium breve red tide blooms:
Initiation, transport, and consequences of surface circulation. Limnol.
Oceanogr. 42(5): 1039-1051.
Tomas, C.R. & Smayda, T.J. 2008. Red tide blooms of Cochlodinium
polykrikoides in a coastal cove. Harmful Algae 7: 308-317.
Trainer, V., Pitcher, G., Reguera, B.
& Smayda, T. 2010. The distribution and
impacts of harmful algal bloom species in eastern boundary upwelling systems. Progress in Oceanography 85: 33-52.
*Corresponding
author; email: moslem.sharifinia@yahoo.com
|