Sains Malaysiana 44(3)(2015): 387–397

 

Monthly Variability of Chlorophyll-α Concentration in Persian Gulf Using Remote Sensing Techniques

(Kevariabelan Bulanan Kepekatan Klorofil-α di Teluk Parsi Menggunakan Teknik Penderiaan Jarak Jauh)

 

 

MOSLEM SHARIFINIA1*, MOHAMMADREZA MOHAMMADPOUR PENCHAH2,

ABBAS MAHMOUDIFARD3, ABOLHASAN GHEIBI4 & ROHALLAH ZARE4

 

1Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran

 

2Young Researchers and Elite Club, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

 

3Faculty of Natural Resources, University of Guilan, P.O. Box: 1144, Sowmehsara, Iran

 

4Faculty of Science, Hormozgan University, P.O. Box: 3995, Bandar Abbas, Iran

 

Received: 13 August 2014/Accepted: 19 October 2014

 

ABSTRACT

During the last two decades, large-scale high biomass algal blooms of the dinoflagellate Cochlodinium have occurred frequently. Prior to 1990, blooms had been primarily reported in Southeast Asia. Since then, time blooms have expanded across Asia, Europe and North American. A multi-spectral classification and quantification technique is developed for estimating chlorophyll-α concentrations. In this study, we explored the use of Sea-viewing Wide Field of-view Sensor (SeaWiFS) satellite data in studying the spatio-temporal changes in chlorophyll-α concentration in Persian Gulf. In addition, the present study focuses on the temperature, dissolved oxygen, salinity, pH and nutrient concentrations during the red tide phenomenon. The resultant chlorophyll-α concentration images derived from SeaWiFS satellite data give an indication of the monthly spatial variation in chlorophyll-α concentration from 2008 to 2009. Variability of chlorophyll-α plot from September 2008 to May 2009 in Persian Gulf showed that September 2008 had the lowest value (1.57±0.14 mg m-3) than other years except May 2009, then tended to increase up to January 2009 (Highest value: 7.47±1.67mg m-3), then a slow decrease up to May 2009. The result showed all water physicochemical parameters measurement in-situ (DO and pH) and ex-situ (NO3 and PO4), were varied among the different months. The highest and lowest values of these parameters were recorded in September 2008 and May 2009, respectively. After occurrence of the red tide, nutrient concentration (NO3 and PO4), dissolved oxygen and pH were reduce compared to before this phenomenon. Compare mean between various months' showed significant differences for temperature records among the months of study (p≤0.05). Lowest and highest temperature recorded were in February 2009 and September 2008, respectively, but no significant differences were found in salinity (p≥0.05). This study showed that SeaWiFS satellite data provide useful information on the spatio-temporal variations in Persian Gulf, which is useful in establishing general trends that are more difficult to determine through routine ground measurements.

 

Keywords: Bloom; chlorophyll-α; fish mortality; Persian Gulf; SeaWiFS

 

ABSTRAK

Sepanjang dua dekad yang lalu, ledakan alga biojisim berskala dinoflagellate Cochlodinium telah berlaku dengan kerap. Sebelum tahun 1990, ledakan selalunya dilaporkan di Asia Tenggara. Sejak itu, masa ledakan telah merebak ke seluruh Asia, Eropah dan Amerika utara. Pengelasan pelbagai tatacara dan teknik mengkuantifikasi dibangunkan untuk menganggar kepekatan klorofil-α. Dalam kajian ini, kami mengkaji penggunaan sensor pandangan laut bidang luas pandangan (SeaWiFS) data satelit dalam mengkaji perubahan spatio-temporal dalam kepekatan klorofil-α di Teluk Parsi. Di samping itu, kajian ini tertumpu kepada suhu, oksigen terlarut, kemasinan, kepekatan pH dan nutrien semasa fenomena pasang-surut merah. Kepekatan klorofil-α imej terhasil yang diperoleh daripada SeaWiFS data satelit memberi petunjuk variasi bulanan reruang dalam kepekatan klorofil-α dari 2008 ke 2009. Kebolehubahan plot klorofil-α dari September 2008 hingga Mei 2009 di Teluk Parsi menunjukkan bulan September 2008 mempunyai nilai terendah (1.57±0.14 mg m-3) berbanding tahun lain kecuali Mei 2009 yang kemudian terus meningkat sehingga Januari 2009 (nilai tertinggi 7.47±1.67 mg m-3), selepas itu penurunan perlahan sehingga ke Mei 2009. Hasil kajian menunjukkan semua pengukuran parameter fizikokimia air in-situ (DO dan pH) dan ex-situ (NO3 dan PO4) adalah berbeza-beza antara bulan. Nilai parameter tertinggi dan terendah ini direkodkan masing-masing pada bulan September 2008 dan Mei 2009. Selepas kejadian pasang-surut merah, nutrien kepekatan (NO3 dan PO4), oksigen terlarut dan pH berkurangan berbanding sebelum fenomena ini. Min bandingan antara bulan menunjukkan perbezaan yang signifikan untuk rekod suhu antara bulan kajian (p≤0.05). Suhu terendah dan tertinggi masing-masing direkod pada Februari 2009 dan September 2008, tetapi tiada perbezaan yang bererti untuk kemasinan (p≥0.05). Kajian ini menunjukkan data satelit SeaWiFS memberikan maklumat berguna tentang variasi spatio-temporal di Teluk Parsi dalam mewujudkan trend umum yang lebih sukar untuk ditentukan melalui pengukuran tanah rutin.

 

Kata kunci: Kematian ikan; klorofil-α; ledakan; SeaWiFS; Teluk Parsi

REFERENCES

 

Banse, K. 1997. Irregular flow of Persian (Arabian) Gulf water to the Arabian sea. Journal of Marine Research 55: 1049-1067.

Binding, C., Greenberg, T. & Bukata, R. 2012. An analysis of MODIS-derived algal and mineral turbidity in Lake Erie. Journal of Great Lakes Research 38: 107-116.

Cannizzaro, J.P. & Carder, K.L. 2006. Estimating chlorophyll-α concentrations from remote-sensing reflectance in optically shallow waters. Remote Sensing of Environment 101: 13-24.

Dall’Olmo, G., Gitelson, A.A., Rundquist, D.C., Leavitt, B., Barrow, T. & Holz, J.C. 2005. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment 96: 176-187.

Ekstrand, S. 1992. Landsat TM based quantification of chlorophyll-α during algae blooms in coastal waters. International Journal of Remote Sensing 13: 1913-1926.

Emery, K.O. 1956. Sediments and water of Persian Gulf. AAPG Bulletin 40: 2354-2383.

Fatemi, S., Nabavi, S., Vosoghi, G., Fallahi, M. & Mohammadi, M. 2012. The relation between environmental parameters of Hormuzgan coastline in Persian Gulf and occurrence of the first harmful algal bloom of Cochlodinium polykrikoides (Gymnodiniaceae). Iranian Journal of Fisheries Sciences 11: 475-489.

Fisheries Statistical Yearbook, I.W. 2009. Fisheries Administration, Council of Agriculture, Executive Tehran. 113.

Gannon, D.P., McCabe, E.B., Camilleri, S.A., Gannon, J.G., Brueggen, M.K., Barleycorn, A.A., Palubok, V.I., Kirkpatrick, G.J. & Wells, R.S. 2009. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378: 171-186.

Gitelson, A.A., Gurlin, D., Moses, W.J. & Barrow, T. 2009. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters. Environmental Research Letters 4: 045003.

Glibert, P. & Burkholder, J. 2006. The complex relationships between increases in fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. Ecology of Harmful Algae 189: 341-354.

Glibert, P.M., Anderson, D.M., Gentien, P., Graneli, E. & Sellner, K.G. 2005. The global, complex phenomena of harmful algal blooms. Oceanography 18(2): 136-147.

Gobler, C.J., Berry, D.L., Anderson, O.R., Burson, A., Koch, F., Rodgers, B.S., Moore, L.K., Goleski, J.A., Allam, B. & Bowser, P. 2008. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7: 293-307.

Gordoa, A., Illas, X., Cruzado, A. & Velásques, Z. 2008. Spatio-temporal patterns in the north-western Mediterranean from MERIS derived chlorophyll-α concentration. Scientia Marina 72: 757-767.

Guinehut, S., Dhomps, A.L., Larnicol, G. & Le Traon, P.Y. 2012 High resolution 3-D temperature and salinity fields derived from in-situ and satellite observations. Ocean Science 8: 845-857.

Iwataki, M., Kawami, H., Mizushima, K., Mikulski, C.M., Doucette, G.J., Relox Jr, J.R., Anton, A., Fukuyo, Y. & Matsuoka, K. 2008. Phylogenetic relationships in the harmful dinoflagellate Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae) inferred from LSU rDNA sequences. Harmful Algae 7: 271-277.

John, V.C. 1992. Harmonic tidal current constituents of the western Arabian Gulf from moored current measurements. Coastal Engineering 17: 145-151.

Kim, D.I., Matsuyama, Y., Nagasoe, S., Yamaguchi, M., Yoon, Y.H., Oshima, Y., Imada, N. & Honjo, T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). Journal of Plankton Research 26: 61-66.

Kudela, R.M. & Gobler, C.J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: Global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14: 71-86.

Kuwae, T., Kamio, K., Inoue, T., Miyoshi, E. & Uchiyama, Y. 2006. Oxygen exchange flux between sediment and water in an intertidal sandflat, measured in-situ by the eddy-correlation method. Marine Ecology Progress Series 307: 59-68.

Larnicol, G., Guinehut, S., Rio, M., Drevillon, M., Faugere, Y. & Nicolas, G. 2006. The Global Observed Ocean Products of the French Mercator Project. https://earth.esa.int.

Lee, Y.S. & Lee, S.Y. 2006. Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea. Marine Pollution Bulletin 52: 626-634.

Lloyd, D.S. 1987. Turbidity as a water quality standard for salmonid habitats in Alaska. North American Journal of Fisheries Management 7: 34-45.

Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17: 1245-1271.

Marcella, M.P. & Eltahir, E.A. 2008. The hydroclimatology of Kuwait: Explaining the variability of rainfall at seasonal and interannual time scales. Journal of Hydrometeorology 9(5): .

Matsuoka, K., Mizuno, A., Iwataki, M., Takano, Y., Yamatogi, T., Yoon, Y.H. & Lee, J.B. 2010. Seed populations of a harmful unarmored dinoflagellate Cochlodinium polykrikoides Margalef in the East China Sea. Harmful Algae 9: 548-556.

Michael Reynolds, R. 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman-Results from the Mt Mitchell expedition. Marine Pollution Bulletin 27: 35-59.

Morse, R.E., Shen, J., Blanco-Garcia, J.L., Hunley, W.S., Fentress, S., Wiggins, M. & Mulholland, M.R. 2011. Environmental and physical controls on the formation and transport of blooms of the dinoflagellate Cochlodinium polykrikoides Margalef in the lower Chesapeake Bay and its tributaries. Estuaries and Coasts 34: 1006-1025.

Mulet, S., Rio, M.H., Mignot, A., Guinehut, S. & Morrow, R. 2012. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part II: Topical Studies in Oceanography 77: 70-81.

Mulholland, M.R., Morse, R.E., Boneillo, G.E., Bernhardt, P.W., Filippino, K.C., Procise, L.A., Blanco-Garcia, J.L., Marshall, H.G., Egerton, T.A. & Hunley, W.S. 2009. Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuaries and Coasts 32: 734-747.

Nagai, S., Nishitani, G., Takano, Y., Yoshida, M. & Takayama, H. 2009. Encystment and excystment under laboratory conditions of the nontoxic dinoflagellate Alexandrium fraterculus (Dinophyceae) isolated from the Seto Inland Sea, Japan. Phycologia 48: 177-185.

Namin, J.I., Sharifinia, M. & Makrani, A.B. 2013. Assessment of fish farm effluents on macroinvertebrates based on biological indices in Tajan River (north Iran). Caspian J. Env. Sci. 11: 29-39.

Ndungu, J., Monger, B.C., Augustijn, D.C., Hulscher, S.J., Kitaka, N. & Mathooko, J.M. 2013. Evaluation of spatio-temporal variations in chlorophyll-α in Lake Naivasha, Kenya: remote-sensing approach. International Journal of Remote Sensing 34: 8142-8155.

Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Subba Rao, D. & Ignatov, A.M. 2010. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal of Marine Systems 82: 47-60.

O’Reilly, J.E., Maritorena, S., Siegel, D.A., O’Brien, M.C., Toole, D., Mitchell, B.G., Kahru, M., Chavez, F.P., Strutton, P. & Cota, G.F. 2000. Ocean color chlorophyll-α algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3: 9-23.

Prasad, T., Ikeda, M. & Kumar, S.P. 2001. Seasonal spreading of the Persian Gulf Water mass in the Arabian Sea. Journal of Geophysical Research: Oceans (1978–2012) 106: 17059- 17071.

Purser, B. & Seibold, E. 1973. The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. The Persian Gulf pp. 1-9. Springer.

Rao, S. & Al-Yamani, F. 1998. Phytoplankton ecology in the waters between Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: A review. Plankton Biology and Ecology 45: 101-116.

Richlen, M.L., Morton, S.L., Jamali, E.A., Rajan, A. & Anderson, D.M. 2010. The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9: 163-172.

Scheffer, M. 1999. The effect of aquatic vegetation on turbidity; how important are the filter feeders? Hydrobiologia 408- 409: 307-316.

Sharifinia, M., Namin, J.I. & Makrani, A.B. 2012. Benthic macroinvertabrate distribution in Tajan River using canonical correspondence analysis. Caspian J. Env. Sci. 10: 181-194.

Stumpf, R., Culver, M., Tester, P., Tomlinson, M., Kirkpatrick, G., Pederson, B., Truby, E., Ransibrahmanakul, V. & Soracco, M. 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2: 147-160.

Swift, S.A. & Bower, A.S. 2003. Formation and circulation of dense water in the Persian/Arabian Gulf. Journal of Geophysical Research: Oceans (1978-2012) 108: 4-1-4-21.

Tester, P.A. & Steidinger, K.A. 1997. Gymnodinium breve red tide blooms: Initiation, transport, and consequences of surface circulation. Limnol. Oceanogr. 42(5): 1039-1051.

Tomas, C.R. & Smayda, T.J. 2008. Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7: 308-317.

Trainer, V., Pitcher, G., Reguera, B. & Smayda, T. 2010. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Progress in Oceanography 85: 33-52.

*Corresponding author; email: moslem.sharifinia@yahoo.com

 

 

previous