Sains Malaysiana 44(3)(2015): 463–471
Peramalan
Data Siri Masa Aliran Sungai di Dataran Banjir dengan Menggunakan
Pendekatan
Kalut
(Predicting Time Series Data at Floodplain Area using Chaos Approach)
NUR HAMIZA ADENAN1* & MOHD SALMI MD NOORANI2
1Jabatan Matematik,
Fakulti Sains dan Matematik, Universiti Pendidikan Sultan Idris
35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia
2Pusat Pengajian Sains
Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Received: 22 May 2014/Accepted: 18 August 2014
ABSTRAK
Bencana banjir boleh menjejaskan kehidupan dan harta benda. Risiko
kejadian banjir boleh diminimumkan jika amaran awal dapat dikeluarkan. Di atas
inisiatif ini, peramalan aliran sungai harian dijalankan di sebuah stesen
aliran sungai di Sungai Muda, Malaysia yang terletak di dataran banjir.
Peramalan dengan mengaplikasikan pendekatan kalut melibatkan dua langkah iaitu
pembinaan semula ruang fasa dan peramalan. Pembinaan ruang fasa melibatkan satu
pemboleh ubah iaitu data aliran sungai yang dibina semula kepada m-dimensi
dengan menggunakan nilai optimum dimensi pembenaman daripada kaedah Cao dan
variasi nilai dimensi pembenaman untuk pendekatan songsang. Hasil daripada
pembinaan ruang fasa ini digunakan untuk meramal aliran sungai dengan
menggunakan kaedah peramalan setempat. Hasil kajian menunjukkan data aliran
Sungai Muda adalah bertelatah kalut berdasarkan analisis daripada kaedah Cao.
Keseluruhan hasil peramalan bagi kedua-dua kaedah dapat memberikan peramalan
yang baik berdasarkan pekali korelasi yang tinggi. Namun, kombinasi parameter
asas bagi pendekatan songsang memberikan hasil peramalan yang lebih baik. Oleh
itu, pendekatan songsang boleh dicadangkan bagi meramal data aliran sungai
harian dengan tujuan memberikan maklumat penting mengenai sistem aliran sungai
di dataran banjir terutamanya di Sungai Muda.
Kata kunci: Aliran sungai; dataran banjir; data siri masa;
pendekatan kalut; peramalan
ABSTRACT
Floods are natural disaster that can cause substantial losses of
lives and property. Flood risk can be minimized if an early warning can be
issued. In this regard, daily river flow prediction was analyzed at a river
flow station in Ladang Victoria, Malaysia which is located in a floodplain
area. Prediction using chaotic approach that involves the reconstruction of
phase space and prediction have been employed in this research. The
reconstruction of phase space involves a single variable of river flow data to
m-dimensional phase space in which the dimension (m) is based on the optimal
values of method of Cao and the variation of m for inverse approach. The
results from the reconstruction of phase space have been used in the prediction
process using local linear approximation method. From our investigation, river
flow at Muda River is chaotic based on the analysis from Cao method. Overall,
prediction results for both methods can provide a good prediction based on a
high correlation coefficient. However, the combination of the preliminary
parameters for the inverse approach yields better prediction. Therefore, the
inverse approach can be proposed for predicting daily river flow data for the
purpose of providing important information about the flow of the river system
in floodplain area especially in Sungai Muda.
Keywords: Chaos approach; floodplain area;
prediction; river flow; time series data
REFERENCES
Abarbanel, H. 1996. Analysis of Observed
Chaotic Data. New York: Springer. hlm. 272.
Adenan, N.H. & Noorani, M.S.M. 2014.
Nonlinear prediction of river flow in different watershed acreage. KSCE
Journal of Civil Engineering 18(7): 2268-2274.
Adenan, N.H. & Noorani, M.S.M. 2013. Monthly
river flow prediction using a nonlinear prediction method. International
Journal of Mathematical, Computational Science and Engineering 7(11):
62-66.
Azamathulla, H.M. & Zahiri, A. 2012. Flow
discharge prediction in compound channels using linear genetic programming. Journal
of Hydrology 454-455: 203-207.
Bernama. 2010, November 3. Floods claim 2 lives;
over 36,000 evacuated. The Sun Daily, http://www.thesundaily.my/
node/136603.
Bernama. 2009, November 16. Floods in Kedah and
Perak worsen. The Sun Daily, http://www.thesundaily.my/ node/149157.
Bernama. 2005, December 21. Alor Star airport
close due to flood. The Sun Daily, http://www.thesundaily.my/node/175577.
Box, G.E.P., Jenkins, G.M. & Reinsel,
G.C. 1976. Time Series Analysis: Forecasting and Control. Chichester:
Wiley. hlm.784.
Cao, L. 1997. Practical method for determining the minimum
embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena 110(1-2):
43-50.
Domenico, M.D., Ghorbani, M.A., Makarynskyy, O., Makarynska,
D. & Asadi, H. 2013. Chaos and reproduction in sea level. Applied
Mathematical Modelling 37(6): 3687-3697.
Feng, L.H. & Lu, J. 2010. The practical research on
flood forecasting based on artificial neural networks. Expert Systems with
Applications 37(4): 2974-2977.
Fojt, O. & Holcik, J. 1998. Applying nonlinear dynamics
to ECG signal processing. IEEE Engineering in Medicine and Biology Magazine 17(2):
96-101.
Ghani, A.A., Chang, C.K., Leow, C.S. & Zakaria, N.A.
2012. Sungai Pahang digital flood mapping: 2007 flood. International Journal
of River Basin Management 10(2): 139-148.
Islam, M. & Sivakumar, B. 2002. Characterization and
prediction of runoff dynamics: A nonlinear dynamical view. Advances in Water
Resources 25(2): 179-190.
Jayawardena, A.W. & Gurung, A.B. 2000. Noise reduction
and prediction of hydrometeorological time series: Dynamical systems approach
vs. stochastic approach. Journal of Hydrology 228(3-4): 242-264.
Jayawardena, A.W. & Lai, F. 1994. Analysis and
prediction of chaos in rainfall and stream flow time series. Journal of
Hydrology 153(1-4): 23-52.
Julien, P.Y., Ghani, A.A., Zakaria, N.A., Abdullah, R.,
Chang, C.K. & Asce, M. 2010. Case study: Flood mitigation of the Muda
River, Malaysia. Journal of Hydraulic Engineering 136(4): 251-261.
Kantz, H. & Schreiber, T. 2004. Nonlinear Time Series
Analysis. Cambridge: Cambridge University Press. hlm. 369.
Lan, L.W., Kuo, A.Y. & Lin, F. 2003. Testing and
prediction of traffic flow dynamics with chaos. Journal of the Eastern Asia
Society for Transportation Studies 5: 1975-1990.
Lau, K.W. & Wu, Q.H. 2008. Local prediction of
non-linear time series using support vector regression. Pattern Recognition 41(5):
1539-1547.
Liebert, W. & Schuster, H. 1989. Proper choice of the
time delay for the analysis of chaotic time series. Physics Letters A 142(2):
107-111.
Rojas, I., Valenzuela, O., Rojas, F., Guillen, A., Herrera,
L.J., Pomares, H., Marquez, L. & Pasadas, M. 2008. Soft-computing
techniques and ARMA model for time series prediction. Neurocomputing 71(4-6):
519-537.
Musa, S. & Wan Mohamed, W.A. 2007. Peramalan kadaralir
sungai bermusim dan tidak bermusim dengan kaedah pelicinan eksponen. Prosiding
Kebangsaan Awam 07: 682- 692.
Peters, E.E. 1996. Chaos and Order in the Capital
Markets: A New View of Cycles, Prices, and Market Volatility. Volume 1. New
York: John Wiley & Sons. hlm. 274.
Regonda, S.K., Rajagopalan, B., Lall, U., Clark, M. &
Moon, Y.I. 2005. Local polynomial method for ensemble forecast of time series. Nonlinear
Processes in Geophysics 12(3): 397-406.
Rodriguez-Iturbe, I., Febres De Power, B., Sharifi, M.B.
& Georgakakos, K.P. 1989. Chaos in rainfall. Water Resources Research 25(7):
1667-1675.
Shabri, A. & Suhartono. 2012. Streamflow forecasting
using least-squares support vector machines. Hydrological Sciences Journal 57(7):
1275-1293.
Sivakumar, B. 2003. Forecasting monthly streamflow dynamics
in the western United States: A nonlinear dynamical approach. Environmental
Modelling & Software 18(8-9): 721-728.
Sivakumar, B. 2002. A phase-space reconstruction approach to
prediction of suspended sediment concentration in rivers. Journal of
Hydrology 258(1-4): 149-162.
Theiler, J., Eubank, S., Alamos, L., Trail, O.P. & Fe,
S. 1993. Don’t bleach chaotic data. Chaos 4(1): 1-12.
Wang, W., van Gelder, P.H.A.J.M., Vrijling, J.K. & Ma,
J. 2006. Forecasting daily streamflow using hybrid ANN models. Journal of
Hydrology 324(1-4): 383-399.
Warren Viesman, J. & Lewis, G.L. 2008. Introduction
to Hydrology. 5th ed. New Jersey: Prentice Hall. hlm.1-599.
Zainab Hashim. 2010. Development of Atmospheric Based
Flood Forecasting and Warning System for Selected River Basins in Malaysia. http://www.met.gov.my/index.php?option=com_content&task=
view&id=2935&Itemid=2329.
*Corresponding
author; email: nurhamiza.adenan@gmail.com
|