Sains Malaysiana 44(4)(2015):
503–509
Evaluation
of the Phytoremediation Potential of Two Medicinal Plants
(Penilaian Potensi Fitoremediasi bagi Dua Tumbuhan Ubatan)
FAZILAH ABD MANAN1*,TSUN-THAI CHAI2, AZMAN ABD SAMAD3 & DAYANGKU DALILAH MAMAT3
1Department
of Biosciences and Health Sciences, Faculty of Biosciences and Medical
Engineering
Universiti Teknologi Malaysia, 81310
Johor Bahru, Johor Darul Takzim, Malaysia
2Department of
Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman
31900 Kampar, Perak Darul Ridzuan, Malaysia
3Department of
Biotechnology and Medical Engineering, Faculty of Biosciences and Medical
Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul
Takzim
Malaysia
4Faculty of
Biosciences and Medical Engineering, Universiti Teknologi Malaysia
81310 Johor Bahru, Johor Darul Takzim, Malaysia
Received: 25 June 2014/Accepted: 7 November 2014
ABSTRACT
Heavy metal pollution leads to human health problems and
represents a constant threat to the environment. Pollutant clean-up using
conventional methods are often hampered by high cost and ineffective pollutant
removal. Phytoremediation technique is a preferable alternative due to its
minimal side effects to the environment in addition to reasonable treatment
cost. In this study, we investigated the potential of Centella asiatica and Orthosiphon
stamineus as phytoremediation agents. Both species were grown in
contaminated soil obtained from industrial land. Plant growth response and
their ability to accumulate and translocate zinc, copper and lead were
assessed. From this study, root growth of C. asiatica was compromised
when grown in contaminated soil. Copper was highly accumulated in C.
asiatica roots while the leaves were more concentrated with zinc and lead.
Conversely, all three tested metals were highly detected in the roots of O.
stamineus, although the root elongation was not adversely affected. Low amount
of metals in the stems of both species permits longer stem length. Correlation
study showed that the accumulation of zinc, copper and lead in plant tissues
varies depending on plant species and the type of metals. Based on the
bioaccumulation, translocation and enrichment factor, our study showed that C.
asiatica was tolerant towards zinc, copper and lead; hence suitable for
phytoextraction. By contrast, O. stamineus acted as a moderate
accumulator of the tested metal elements.
Keywords: Centella
asiatica; heavy metals; Orthosiphon stamineus; phytoremediation
ABSTRAK
Pencemaran logam berat membawa kepada masalah kesihatan manusia
dan menjadi ancaman berterusan kepada alam sekitar. Pembersihan menggunakan
kaedah konvensional sering terjejas oleh kos yang tinggi sedangkan penyingkiran
pencemar tidak efektif. Sebagai alternatif, teknik fitoremediasi menjadi
pilihan utama disebabkan oleh kesan sampingan minimum terhadap alam sekitar
dengan kos rawatan yang munasabah. Dalam kajian ini, kami mengkaji potensi Centella asiatica dan Orthosiphon
stamineus sebagai agen fitoremediasi. Kedua-dua spesies ditumbuhkan
menggunakan tanah tercemar dari kawasan perindustrian. Tindak balas
pertumbuhan, kebolehan mengumpul dan mentranslokasi zink, kuprum dan plumbum
dinilai. Daripada kajian ini, pertumbuhan akar C. asiatica dikompromi
apabila tumbuh pada tanah tercemar. Kuprum terkumpul pada akar C. asiatica manakala
daunnya mengandungi lebih banyak zink dan plumbum. Sebaliknya, semua logam yang
dikaji dikesan dengan sangat tinggi di dalam akar O. stamineus, walaupun
pertumbuhan akar tidak terjejas. Jumlah logam yang rendah pada batang kedua-dua
spesies membolehkan ia tumbuh lebih panjang. Analisis korelasi menunjukkan
pengumpulan zink, kuprum dan plumbum dalam tisu tumbuhan adalah berbeza
mengikut spesies dan jenis logam. Berdasarkan faktor bio-akumulasi, faktor
translokasi dan faktor pengkayaan, kajian kami menunjukkan bahawa C.
asiatica adalah toleran terhadap zink, kuprum dan plumbum, maka ia sesuai
untuk fito-ekastraksi. Walau bagaimanapun, O. stamineus bertindak
sebagai pengumpul sederhana bagi logam yang dikaji.
Kata kunci: Centella
asiatica; fitoremediasi; logam berat; Orthosiphon stamineus
REFERENCES
Abdu, A., Aderis, N., Abdul-Hamid, H., Majid, N.M., Jusop,
S., Karam, D.S. & Ahmad, K. 2011. Using Orthosiphon stamineus B. for
phytoremediation of heavy metals in soils amended with sewage sludge. American
Journal of Applied Sciences 8(4): 323-331.
Ahamed, B.M. & Abdul, M.A. 2010. Medicinal potentials of Orthosiphon stamineus benth. WebmedCentral CANCER 1(12): 1-7.
Ali, H., Khan, E. & Sajad, M.A. 2013. Phytoremediation
of heavy metals-concepts and applications. Chemosphere 91(7): 869-881.
Ameer, O.Z., Salmani, M., Asmawi, M.Z., Ibraheem, Z.O. &
Yam, M.F. 2012. Orthosiphon stamineus: Traditional uses, phytochemistry,
pharmacology, and toxicology. Journal of Medicinal Food 15(8): 678-690.
Antosiewicz, D.M. 1992. Adaptation of plants to an
environment polluted with heavy metals. Acta Societatis Botanicorum Poloniae 61(2): 281-299.
Baker, A.J.M. & Walker, P.L. 1990. Ecophysiology of
metal uptake by tolerant plants. In Heavy Metal Tolerance in Plants:
Evolutionary Aspects, edited by Shaw, A.J. Boca Raton: CRC Press. pp.
155-177.
Clemens, S., Palmgren, M.G. & Krämer, U. 2002. A long
way ahead: Understanding and engineering plant metal accumulation. Trends in
Plant Science 7(7): 309-315.
Fernandes, J. & Henriques, F. 1991. Biochemical,
physiological, and structural effects of excess copper in plants. The
Botanical Review 57(3): 246-273.
Ghosh, M. & Singh, S. 2005. A review on phytoremediation
of heavy metals and utilization of it’s by products. Applied Ecology and
Environmental Research 3(1): 1-18.
Gohil, K., Patel, J. & Gajjar, A. 2010. Pharmacological
review on Centella asiatica: A potential herbal cure-all. Indian
Journal of Pharmaceutical Sciences 72(5): 546-556.
Gwóźdź, E.A., Przymusiński, R.,
Rucińska, R. & Deckert, J. 1997. Plant cell responses to heavy metals:
Molecular and physiological aspects. Acta Physiologiae Plantarum 19(4):
459-465.
Hamid, A.A., Shah, Z.M., Muse, R. & Mohamed, S. 2002.
Characterisation of antioxidative activities of various extracts of Centella
asiatica (L) Urban. Food Chemistry 77(4): 465-469.
Keunen, E., Remans, T., Bohler, S., Vangronsveld, J. &
Cuypers, A. 2011. Metal-induced oxidative stress and plant mitochondria. International
Journal of Molecular Sciences 12(10): 6894-6918.
Lorestani, B., Cheraghi, M. & Yousefi, N. 2011.
Phytoremediation potential of native plants growing on a heavy metals
contaminated soil of copper mine in Iran. World Acad. Sci. Eng. Techno.
77: 377-382.
Malaysia Food Act 1983 and Food Regulations 1985: Details on
Food Regulations amendments from 1987 to January, 1994 : All amendments up to
January, 1994. 1994. Kuala Lumpur: MDC Sdn. Bhd.
Malik, N., Chamon, A., Mondol, M., Elahi, S. & Faiz, S.
2011. Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza
sativa, Variety-BR49). Journal of the Bangladesh Association
of Young Researchers 1(1): 79-91.
Mohd, S.N., Majid, N.M., Shazili, N.A.M. & Abdu, A.
2013. Assessment of Melaleuca cajuputi as heavy metals phytoremediator
for sewage sludge contaminated soil. American Journal of Applied Sciences 10(9):
1087-1092.
Mohd Salim, R.J., Adenan, M.I., Amid, A., Jauri, M.H. &
Sued, A.S. 2013. Statistical analysis of metal chelating activity of Centella
asiatica and Erythroxylum cuneatum using response surface
methodology. Biotechnology Research International 2013: Article ID
137851.
Mokhtar, H., Morad, N. & Fizri, F.F.A. 2011.
Phytoaccumulation of copper from aqueous solutions using Eichhornia
crassipes and Centella asiatica. Int. J. Environ. Sci. Dev. 2(3):
205-210.
Nagajyoti, P., Lee, K. & Sreekanth, T. 2010. Heavy
metals, occurrence and toxicity for plants: A review. Environmental
Chemistry Letters 8(3): 199-216.
NYS DEC. 2006. New York State Brownfield cleanup program
development of soil cleanup objectives technical support document. New York
State Department of Environmental Conservation and New York State Department of
Health, Albany, NY. http://www.dec.ny.gov/chemical/34189.html. Accessed on 25
January 2014.
Punz, W.F. & Sieghardt, H. 1993. The response of roots
of herbaceous plant species to heavy metals. Environmental and Experimental
Botany 33(1): 85-98.
Rosalizan, M., Rohani, M., Khatijah, I. & Shukri, M.
2008. Physical characteristics, nutrient contents and triterpene compounds of
ratoon crops of Centella asiatica at three different stages of maturity. Journal of Tropical Agriculture and Food Science 36(1): 43-51.
Sengar, R.S., Gautam, M., Sengar, R.S., Garg, S.K., Sengar,
K. & Chaudhary, R. 2008. Lead stress effects on physiobiochemical
activities of higher plants. Reviews of Environmental Contamination and
Toxicology 196: 73-93.
Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Brazilian
Journal of Plant Physiology 17(1): 35-52.
Singh, R., Gautam, N., Mishra, A. & Gupta, R. 2011.
Heavy metals and living systems: An overview. Indian Journal of Pharmacology 43(3): 246-253.
Tripathi, P., Dwivedi, S., Mishra, A., Kumar, A., Dave, R.,
Srivastava, S., Shukla, M.K., Srivastava, P.K., Chakrabarty, D. & Trivedi,
P.K. 2012. Arsenic accumulation in native plants of West Bengal, India:
Prospects for phytoremediation but concerns with the use of medicinal plants. Environmental
Monitoring and Assessment 184(5): 2617-2631.
US EPA. 2002.
Supplemental guidance for developing soil screening levels for superfund sites.
Washington, D.C.: Office of Solid Waste and Emergency Response. http://www.epa.
gov/superfund/health/conmedia/soil/index.htm. Accessed on 25 January 2014.
Van Der Ent, A., Baker, A.J., Reeves, R.D., Pollard, A.J.
& Schat, H. 2013. Hyperaccumulators of metal and metalloid trace elements:
Facts and fiction. Plant and Soil 362(1-2): 319-334.
Van Ginneken, L., Meers, E., Guisson, R., Ruttens, A., Elst,
K., Tack, F.M., Vangronsveld, J., Diels, L. & Dejonghe, W. 2007.
Phytoremediation for heavy metal-contaminated soils combined with bioenergy
production. Journal of Environmental Engineering and Landscape Management 15(4):
227-236.
Whiting, S.N., Leake, J.R., McGrath, S.P. & Baker, A.J.
2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytologist 145(2): 199-210.
Yap, C.K., Ismail, A. & Tan, S.G. 2004. The impact of
anthropogenic activities on heavy metal (Cd, Cu, Pb and Zn) pollution:
Comparison of the metal levels in the green-lipped mussel Perna viridis (Linnaeus)
and in the sediment from a high activity site at Kg. Pasir Puteh and relatively
low activity site at Pasir Panjang. Pertanika Journal of Tropical
Agricultural Science 27(1): 73-78.
Yoon, J., Cao, X., Zhou, Q. & Ma, L.Q. 2006. Accumulation
of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science
of the Total Environment 368(2): 456- 464.
Zarinkamar, F., Saderi, Z. & Soleimanpour, S. 2013.
Excluder strategies in response to Pb toxicity in Matricaria chamomilla. Advances in Bioresearch 4(3): 39-49.
*Corresponding
author; email: fazilah@fbb.utm.my
|