Sains Malaysiana 44(4)(2015):
517–527
Life Cycle Inventory of Institutional Medium-scaled
Co-composting of Food Waste and Yard Waste in Tropical Country
(Inventori Kitaran Hidup di Institusi pada Skala Sederhana
Pengkomposan bersama Sisa Makanan dan Sisa Lapangan di Negara Tropika)
CHEE GUAN NG* & SUMIANI YUSOFF
Department of Civil Engineering, University of Malaya, 50603
Kuala Lumpur, Malaysia
Received: 19 September 2013/Accepted: 19 October 2014
ABSTRACT
The main objective of the present study was to provide a
comprehensive LCI of medium scale composting of food waste and yard waste at
institutional level, based on substance flow analysis (SFA). A secondary
objective was to present the composition and assess the quality of the final
compost product from composting of typical Asian organic waste (food waste and
yard waste). The experiments were designed to represent a batch situation in an
institutional medium size composting scenario with input material of food waste
mixed with grass clippings and dried leaves. Two composting runs were carried
out with the intention to showcase the heterogeneity of organic waste and study
the effect of windrow size on the performance of the process. The input and
output material were sampled and characterized in order to quantify the
substance balance of the process. SFA was performed by means of the mass balance
model STAN 2.5 to compute unknown parameters (gaseous emissions). SFAs
have been performed for C, N, K, P, Cd, Cr, Cu, Ni and Pb. The composting
windrows were fed with 212.4 and 393 kg, respectively. VS content reduction is
greater in composting pile with larger size (Run 2). The loss of C during
composting was recorded in the range of 0.146-0.166 kg/kg ww. The C losses via
leachate were insignificant (0.02% of the total input C). The total N loss
during the process was 0.005-0.012 kg/kg ww. The leachate generation was
measured as 0.012-0.013 kg/kg ww. The flows of selected heavy metals were
assessed. Heavy metals were of minor significance due to low concentrations in
the inputs (food waste and yard waste). Heavy metals were found to be released
to the atmosphere. However, majority of heavy metals remain in the finished
compost. The C/N reduction during the process was in the range of 10-23%. In
general, the compost composition was considered to be within the ranges
previously reported in literature and thus ready for application in gardening.
The LCI presented in the present study can be used as a starting point
for making environmental assessments of medium-scale co-composting of food
waste and yard waste in tropical environment. No major environmental problems
were identified from the process, except for the emissions of GHGs.
Keywords: Composting; direct emissions; food waste; life cycle
inventory; substance flow analysis; yard waste
ABSTRAK
Objektif utama kajian ini adalah untuk memberi LCI yang komprehensif
pada skala sederhana pengkomposan sisa makanan dan sisa lapangan pada peringkat
institusi, berdasarkan pada analisis aliran bahan (SFA). Objektif kedua
adalah untuk membentangkan komposisi dan menilai kualiti produk akhir daripada
pengkomposan sisa organik tipikal Asia (sisa makanan dan sisa lapangan).
Eksperimen direka untuk mewakili situasi kumpulan di institusi dengan senario
pengkomposan saiz sederhana dengan input bahan sisa makanan yang bercampur
dengan keratan rumput dan daun kering. Dua pusingan pengkomposan telah
dijalankan dengan tujuan untuk menunjukkan keheterogenan sisa organik dan
mengkaji kesan saiz timbunan ke atas prestasi proses. Bahan input dan output
yang telah disampel dan dicirikan untuk menentukan baki bahan proses. SFA telah
dijalankan melalui imbangan jisim model STAN 2.5 untuk mengira parameter yang tidak
diketahui (pelepasan gas). SFAs telah dijalankan bagi C, N, K, P, Cd, Cr, Cu,
Ni dan Pb. Timbunan pengkomposan masing-masing diberikan 212.4 dan 393 kg.
Pengurangan kandungan VS adalah lebih besar dalam timbunan
pengkomposan dengan saiz yang lebih besar (Pusingan 2). Kehilangan C semasa pengkomposan
direkod dalam julat antara 0.146 dan 0.166 kg/kg ww. Kehilangan C melalui larut
lesap adalah tidak ketara (0.02% daripada jumlah input C). Jumlah kehilangan N
semasa proses adalah 0.005-0.012 kg/kg ww. Penghasilan larut lesap adalah
sebanyak 0.012-0.013 kg/kg ww. Aliran logam berat terpilih turut dinilai. Logam
berat tidak ketara disebabkan kepekatan yang rendah dalam input (sisa makanan
dan sisa lapangan). Logam berat dilepaskan ke atmosfera. Walau bagaimanapun,
kebanyakan logam berat kekal dalam hasil pengkomposan. Pengurangan C/N semasa
proses adalah dalam lingkungan 10-23%. Secara umum, komposisi pengkomposan
dianggap berada dalam julat seperti yang dilaporkan dalam kajian sebelum ini
dan sekali gus bersedia untuk digunakan dalam berkebun. LCI yang dikemukakan
dalam kajian ini boleh digunakan sebagai titik permulaan untuk menjadikan
penilaian alam sekitar pada skala sederhana pengkomposan bersama sisa makanan
dan sisa lapangan dalam persekitaran tropika. Tiada masalah alam sekitar yang
utama dikenal pasti daripada proses tersebut, kecuali pelepasan GHG.
Kata kunci: Analisis aliran bahan; inventori
kitaran hidup; pelepasan langsung; pengkomposan; sisa lapangan; sisa makanan
REFERENCES
Adi, A. & Noor, Z. 2009. Waste recycling:
Utilization of coffee grounds and kitchen waste in vermicomposting. Bioresource
Technology 100(2): 1027-1030.
Amlinger, F., Peyr, S. & Cuhls, C. 2008.
Green house gas emissions from composting and mechanical biological treatment. Waste
Management Research 26(1): 47-60.
Andersen, J.K., Boldrin, A., Christensen, T.H.
& Scheutz, C. 2012. Home composting as an alternative treatment option for
organic household waste in Denmark: An environmental assessment using life
cycle assessment-modelling. Waste Management 32(1): 31-40.
Andersen, J.K., Boldrin, A., Christensen, T.H.
& Scheutz, C. 2011. Mass balances and life cycle inventory of home
composting of organic waste. Waste Management 31(9): 1934-1942.
Cabaraban, M.T.I., Khire, M.V. & Alocilja,
E.C. 2008. Aerobic in-vessel composting versus bioreactor landfilling using
life cycle inventory models. Clean Technologies and Environmental Policy 10(1):
39-52.
Cencic, O. &
Rechberger, H. 2008. Material flow analysis with software STAN. Journal of
Environmental Engineering and Management 18(1): 3-7.
Chen, T.C. & Lin, C.F. 2008. Greenhouse gases emissions
from waste management practices using life cycle inventory model. Journal of
Hazardous Materials 155(1): 23-31.
Colón, J., Martínez-Blanco, J., Gabarrell, X., Artola, A.,
Sánchez, A., Rieradevall, J. & Font, X. 2010. Environmental assessment of
home composting. Resources, Conservation and Recycling 54(11): 893-904.
Fukumoto, Y., Osada, T., Hanajima, D. & Haga, K. 2003.
Patterns and quantities of NH3, N20 and CH4 emissions during manure composting
without forced aeration-effect of compost pile. Bioresource Technology 89(2):
109-114.
ISO. 1998. Environmental Management- Life Cycle Assessment-
Goal and Scope Definition and Inventory Analysis (ISO:14041). Geneva:
International Standards Organization.
Jasim, S. & Smith, S.R. 2003. The practicability of home
composting for the management of biodegradable domestic solid waste. London:
Center for Environmental Control and Waste Management, Department of Civil and
Environmental Engineering, Imperial College.
Khoo, H.H., Lim, T.Z. & Tan, R.B.H. 2010. Food waste
conversion options in Singapore: Environmental impacts based on an LCA
perspective. Science of the Total Environment 408(6): 1367-1373.
Kim, M.H. & Kim, J.W. 2010. Comparison through a LCA
evaluation analysis of food waste disposal options from the perspective of
global warming and resource recovery. Science of the Total Environment 408(19):
3998-4006.
Komilis, D.P. & Ham, R.K. 2004. Life-cycle inventory of
municipal solid waste and yard waste windrow composting in the United States. Journal
of Environmental Engineering 130(11): 1390-1400.
Lee, S.H., Choi, K.I., Osako, M. & Dong, J.I. 2007.
Evaluation of environmental burdens caused by changes of food waste management
systems in Seoul, Korea. Science of the Total Environment 387(1): 42-53.
Lundie, S. & Peters, G.M. 2005. Life cycle assessment of
food waste management options. Journal of Cleaner Production 13(3):
275-286.
Martínez-Blanco, J., Colón, J., Gabarrell, X., Font, X.,
Sánchez, A., Artola, A. & Rieradevall, J. 2010. The use of life cycle
assessment for the comparison of biowaste composting at home and full scale. Waste
Management 30(6): 983-994.
Nair, J., Sekiozoic, V. & Anda, M. 2006. Effect of
pre-composting on vermicomposting of kitchen waste. Bioresource Technology 97(16):
2091-2095.
Papadopoulos, A.E., Stylianou, M.A., Michalopoulos, C.P.,
Moustakas, K.G., Hapeshis, K.M., Vogiatzidaki, E.E.I. & Loizidou, M.D.
2009. Performance of a new household composter during in-home testing. Waste
Management 29(1): 204-213.
PerkinElmer. 2012. Technologies for Mass Spectrometry.
http:// www.perkinelmer.com/default.xhtml.
Rea, E., Pierandrei F., Rinaldi, S., De Lucia, B.,
Vecchietti, L. & Ventrelli, A. 2009. Effect of Compost-Based Alternative
Substrata in Potted Aloe Vera (L.) Burm. F. Acta Hort. (ISHS) 807.
pp. 541-546.
Riber, C., Rodushkin, I., Spliid, H. & Christensen, T.H.
2007. Method for fractional soldi waste sampling and chemical analysis. International
Journal of Environmental Analytical Chemistry 87(5): 321-335.
Russo, G., De Lucia, B., Vecchietti, L., Rea, E. &
Leone, A. 2011. Environmental and agronomical analysis of different
compost-based peat-free substrates in potted Rosemary. Acta Hort. (ISHS). 891.
pp. 265-272.
Zhao, W., van der Voet, E., Zhang, Y. & Huppes, G. 2009.
Life cycle assessment of municipal solid waste management with regard to
greenhouse gas emissions: case study of Tianjin, China. Science of the Total
Environment 407: 1517-1526.
*Corresponding
author; email: guancher@hotmail.com
|