Sains Malaysiana 44(4)(2015):
537–543
Effects
of Dietary Protein Level on Growth and Ammonia Excretion of Leopard
Coral Grouper, Plectropomus leopardus (Lacepede, 1802)
(Kesan Pemakanan Tahap Protein terhadap Pertumbuhan dan Perkumuhan
Amonia pada Kerapu Bara Plectropomus leopardus (Lacepede, 1802))
S. XIA1, Z. SUN1*, S. FENG1, Z. ZHANG2, M.M. RAHMAN3,4 & M. RAJKUMAR3
1Tianjin Fisheries
Research Institute, Tianjin 300221, P.R. China
2Tianjin Fisheries
Technology Promotion Station, Tianjin 300221, P.R. China
3Institute of
Oceanography and Maritime Studies, International Islamic University Malaysia
Kg. Cherok Paloh, 26160 Kuantan, Pahang, Malaysia
4Department of Marine
Science, Kulliyyah of Science, International Islamic University Malaysia
Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
Received: 3 July 2014/Accepted: 25 November 2014
ABSTRACT
The effects of dietary protein level on the growth performance and
ammonia excretion of the leopard coral grouper, Plectropomus leopardus were investigated for
eight weeks. Fish were fed diets with 40, 45, 50, 55 and 60% crude protein
levels in separate recirculating systems. Fish fed with the 50% crude protein
containing diet showed the best ingestion rate, which was significantly higher
than that found in the other groups. As the dietary protein level increased,
the specific growth rate increased significantly and it reached the highest
level at 50% crude protein containing diet. Based on the results of all
measured parameters 50% protein containing diet was the best among all test
diets. The regression equation for dietary protein level versus ammonia
excretion indicated that the optimal dietary protein level with the least
ammonia excretion was 53.14%. More research is still needed to elucidate the
effects of 53.14% crude protein containing diet on the specific growth rate,
feed conversion ratio, protein efficiency ratio and ingestion rate of leopard
coral grouper before recommending this level. Until then, 50% protein containing
diet can be recommended for leopard coral grouper culture in the recirculation
system.
Keywords: Ammonia excretion; dietary protein level; Plectropomus leopardus; water quality
ABSTRAK
Kesan tahap protein pemakanan terhadap pertumbuhan dan perkumuhan
amonia pada kerapu bara, Plectropomus
leopardus telah dikaji selama lapan minggu. Ikan telah diberi
makan dengan diet tahap protein mentah 40, 45, 50, 55 dan 60% dalam
sistem peredaran air berasingan. Ikan yang diberi makan diet dengan
kandungan 50% protein mentah menunjukkan kadar pengambilan terbaik,
jauh lebih tinggi daripada yang terdapat di dalam kumpulan-kumpulan
lain. Apabila tahap protein dalam diet meningkat, kadar pertumbuhan
khusus meningkat dengan ketara dan mencapai tahap tertinggi pada
diet yang mengandungi 50% protein mentah. Berdasarkan keputusan
semua parameter yang diambil, diet mengandungi 50% protein adalah
yang terbaik di antara semua ujian diet. Persamaan regresi untuk
tahap protein dalam diet berbanding perkumuhan amonia menunjukkan
tahap protein pemakanan yang optimum dengan kurang perkumuhan amonia
adalah 53.14%. Lebih banyak kajian perlu dijalankan untuk menjelaskan
kesan diet yang mengandungi 53.14% protein mentah terhadap kadar
pertumbuhan spesifik, nisbah pertukaran makanan, nisbah kecekapan
protein dan kadar pemakanan kerapu bara sebelum ia dapat disyorkan.
Sehingga ini, diet yang mengandungi 50% protein dapat disyorkan
kepada penternakan kerapu bara dalam sistem peredaran air semula.
Kata kunci: Amonia perkumuhan; kualiti air; Plectropomus leopardus; tahap protein pemakanan
REFERENCES
Ayling, R.D., Baker, S.E., Peek, M.L., Simon, A.J. &
Nicholas, R.J. 2000. Comparison of in vitro activity of danofloxacin,
florfenicol, oxytetracycline, spectinomycin and tilmicosin against recent field
isolates of Mycoplasma bovis. Veterinary Record 146: 745-747.
Ballantyne, J.S. 2001. Amino acid metabolism. Fish
Physiology and Biochemistry 20: 77-107.
Bibiano-Melo, J.F., Lundstedt, L.M., Metón, I., Baanante,
I.V. & Moraes, G. 2006. Effects of dietary levels of protein on nitogenous
metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comparative
Biochemistry and Physiology Part A 145: 181-187.
Cho, C.Y. & Kaushik, S.J. 1985. Effects of protein
intake on metabolizable and net energy values of fish diets. In Nutrition
and Feeding in Fish, edited by Cowey, C.B., Mackie, A.M. & Bell, J.G.
London: Academic Press.
Engin, K. & Carter, C.G. 2001. Ammonia and urea
excretion rates of juvenile Australian short-finned eel (Anguilla australis
australis) as influenced by dietary protein level. Aquaculture 194:
123-136.
Grasshoff, K. 1999. Methods of Seawater Analysis, 3rd
ed. New York: Verlag Chime, Weinheim.
Gunasekera, R.M., de Silva, S.S., Collins, R.A., Gooley, G.
& Ingram, B.A. 2000. Effect of dietary protein level on growth and food
utilization in juvenile Murray cod Maccullochella peelii peelii (Mitchell). Aquaculture Research 31: 181-187.
Guo, Z., Zhu, X., Liu, J., Han, D., Yang, Y., Lan, Z. &
Xie, S. 2012. Effects of dietary protein level on growth performance, nitrogen
and energy budget of juvenile hybrid sturgeon, Acipenser baerii +
× A. gueldenstaedtii . Aquaculture 338-341:
89-95.
Jiang, K., Li, Y., Li, J., Wang, L. & Wang, Y. 2005.
Eco-nutrition requirement of protein for juvenile turbot (Scophthalmus
maximus L.). Marine Science 29: 65-70.
Kailola, P.J., Williams, M.J., Stewart, P.C., Reichelt,
R.E., McNee, A. & Grieve, C. 1993. Australian Fisheries Resources.
Canberra, Australia: Bureau of Resource Sciences.
Kenzo, Y., Kazuhisa, Y., Kimio, A., Masayuki, C., Koji, H.
& Shinichi, K. 2008. Influence of light intensity on feeding, growth, and
early survival of leopard coral grouper (Plectropomus leopardus) larvae
under mass–scale rearing conditions. Aquaculture 279: 55-62.
Kim, K., Kayes, T.B. & Amundson, C.H. 1991. Purified
diet development and re-evaluation of the dietary protein requirement of
fingerling rainbow trout (Oncorhyncus mykiss). Aquaculture 96:
57-67.
Kuiter, R.H. & Tonozuka, T. 2001. Pictorial guide to
Indonesian reef fishes. Part 1. Eels-Snappers, Muraenidae-Lutjanidae.
Zoonetics, Australia.
Millikin, M.R. 1982. Effects of dietary protein
concentration on growth, feed efficiency, and body composition of age-0 striped
bass. Transactions of the American Fisheries Society 111: 373-378.
Mohanty, S.S. & Samantaray, K. 1996. Effect of varying
levels of dietary protein on the growth performance and feed conversion
efficiency of snakehead Channa striata fry. Aquaculture Nutrition 2:
89-94.
National Research Council (NRC) 1993. Nutrient
Requirements of Warm Water Fishes and Shellfishes. rev. ed. Washington, DC:
National Academy Press.
Rahman, M.M. & Verdegem, M.C.J. 2010. Effects of intra-
and interspecific competition on diet, growth and behaviour of Labeo calbasu (Hamilton) and Cirrhinus cirrhosus (Bloch). Applied Animal
Behaviour Science 128: 103-108.
Rahman, M.M. & Meyer, C.G. 2009. Effects of food type on
diet behaviours of common carp Cyprinus carpio L. in simulated
aquaculture pond conditions. Journal of Fish Biology 74: 2269 -2278.
Rahman, M.M. & Verdegem, M.C.J. 2007. Multi-species
fishpond and nutrients balance. In Fishponds in Farming Systems, edited
by ven der Zijpp, A.J., Verreth, A.J.A., Tri, L.Q., ven Mensvoort, M.E.F.,
Bosma, R.H. & Beveridge, M.C.M. Netherlands: Wageningen Academic
Publishers.
Rahman, M.M., Kadowaki, S., Linn, S.M. & Yohei, Y. 2012.
Effects of protein skimming on water quality, bacterial abundance and abalone
growth in land based recirculating aquaculture systems. Journal of Fisheries
and Aquatic Science 7: 150-161.
Rahman, M.M., Kadowaki, S., Balcombe, S.R. & Wahab, M.A.
2010. Common carp (Cyprinus carpio L.) alter their feeding niche in
response to changing food resources: Direct observations in simulated ponds. Ecological
Research 25: 303-309.
Rahman, M.M., Jo, Q., Gong, Y.G., Miller, S.A. &
Hossain, M.Y. 2008a. A comparative study of common carp (Cyprinus carpio L.)
and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water
quality, nutrient accumulations, food intake and growth of fish in simulated
rohu (Labeo rohita Hamilton) ponds. Aquaculture 285: 78-83.
Rahman, M.M., Verdegem, M., Nagelkerke, L., Wahab, M.A.,
Milstein, A. & Verreth, J. 2008b. Effects of common carp Cyprinus carpio (L.) and feed addition in rohu Labeo rohita (Hamilton) ponds on
nutrient partitioning among fish, plankton and benthos. Aquaculture Research 39: 85-95.
Rahman, M.M., Verdegem, M.C.J. & Wahab, M.A. 2008c.
Effects of tilapia (Oreochromis nilotica L.) addition and artificial
feeding on water quality, and fish growth and production in rohu-common carp
bi-culture ponds. Aquaculture Research 39: 1579-1587.
Rahman, M.M., Verdegem, M.C.J., Nagelkerke, L.A.J., Wahab,
M.A. & Verreth, J.A.J. 2008d. Swimming, grazing and social behaviour of
rohu Labeo rohita (Hamilton) and common carp Cyprinus carpio (L.)
in tanks under fed and non-fed conditions. Applied Animal Behaviour Science 213:
255-264.
Rajkumar, M., Rahman, M.M., Reni Prabha, A. & Phukan, B.
2013. Effect of cholymbi on growth, proximate composition, and digestive enzyme
activity of fingerlings of long whiskered catfish, Mystus gulio (Actinopterygii:
Siluriformes: Bagridae). Acta Ichthyol Piscat 43: 15-20.
Russell, M. 2007. Protecting common coral trout (Plectropomus
leopardus) spawning aggregations in the Great Barrier Reef marine park,
Australia. Gulf and Caribbean Fisheries Institute 58: 276-280.
Rychly, J. 1980. Nitrogen balance in
trout. II. Nitrogen excretion after feeding diets with varying protein and
carbohydrate levels. Aquaculture 20: 343-350.
Shiau, S.Y. & Huang, S.L. 1989. Optimal dietary protein
level for hybrid tilapia (Oreochromis niloticus × O. aureus)
reared in seawater. Aquaculture 81: 119-127.
Solorzano, L. 1969.
Determination of ammonia in natural waters by the phenol hypocholorite method. Limnol.
Oceanogr. 14: 799-801.
Stone, D.A., Allan, G.L. & Anderson, A.J. 2003.
Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell).
III. The protein-sparing effect of wheat starch based carbohydrates. Aquaculture
Research 34: 123 & 134.
Taguchi, S., Ito-Oka, E., Masuyama, K., Kasahara, I. &
Goto, K. 1985. Application of organic solvent-soluble membrane filters in the
preconcentration and determination of trace elements: Spectrophotometric
determination of phosphorus as phosphomolybdenum blue. Talanta 32:
391-394.
van Waarde, A. 1983. Aerobic and anaerobic ammonia
production by fish. Comparative Biochemistry and Physiology 74: 675-684.
Xia, S., Li, Y., Wang, W., Rajkumar, M., Kumaraguru, vasagam,
K.P. & Wang, H. 2010. Influence of dietary protein levels on growth,
digestibility, digestive enzyme activity and stress tolerance in white-leg
shrimp, Litopenaeus vannamei (Boone, 1931), reared in high-density tank
trials. Aquaculture Research 41: 1845-1854.
Yang, M., Wang, Y., Fu, S., Shen, M., Zheng, F., Wang, G.,
Yin, S. & Li, X. 2012. Effects of different temperatures and salinities and
pH values on the early development of Plectropomus leopardus Lacépède. Journal
of Tropical Ecology 3: 104-108.
Yang, S., Liou, C. & Liu, F. 2002. Effects of dietary
protein level on growth performance, carcass composition and ammonia excretion
in juvenile silver perch (Bidyanus bidyanus). Aquaculture 213:
363-372.
Zhu, Z.Y. & Yue, G.H. 2008. The complete mitochondrial
genome of red grouper Plectropomus leopardus and its applications in
identification of grouper species. Aquaculture 276: 44-49.
*Corresponding
author; email: profzsun@gmail.com
|