Sains Malaysiana 44(4)(2015): 565–569
Comparison
of the Performance of MR-deDuster with Other Conventional Cyclones
(Perbandingan Prestasi MR-deDuster
dengan Siklon Konvensional Lain)
M. RASHID*, N. HUDA, H. NORELYZA
& N. HASYIMAH
Air
Resources Research Laboratory, Malaysia-Japan International Institute of
Technology
54100
UTM Kuala Lumpur, Malaysia
Received:
20 August 2014/Accepted: 7 November 2014
ABSTRACT
A new type of cyclone design configuration called MR-deDuster,
which contains multi cyclone, has been developed. A theoretical study had been
carried out to evaluate and predict the performance of a MR-deDuster.
In this paper, a comparative study was done to investigate the performance of MR-deDuster
with other conventional cyclones in terms of collection efficiency and pressure
drop. The performance of MR-deDuster was measured by its
collection efficiency based on the particle size distribution of activated
carbon. It was found that MR-deDuster is able to collect as high
as 94% of PM10 which is high comparing with many other conventional
cyclones. In addition, the pressure drop of the unit is relatively low compared
to the other cyclones which highlight the ability of the unit to capture the
fine particle at low pressure drop.
Keywords: Air pollution; cyclone efficiency; dust emission;
multi-cyclones; pressure drop
ABSTRAK
Sejenis konfigurasi reka bentuk siklon baru yang dikenali sebagai MR-deDuster
yang mengandungi pelbagai siklon, telah dibangunkan. Suatu kajian teori telah
dijalankan untuk menilai dan meramalkan prestasi MR-deDuster.
Dalam kertas ini, suatu kajian perbandingan telah dijalankan untuk mengkaji
prestasi MR-deDuster dengan siklon konvensional lain daripada segi
kecekapan pungutan dan kejatuhan tekanan. Prestasi MR-deDuster
diukur melalui kecekapan kutipan berdasarkan agihan saiz zarah karbon
diaktifkan. Didapati bahawa MR-deDuster mampu untuk
mengumpul setinggi 94% PM10 jika dibandingkan dengan siklon
konvensional lain. Di samping itu, penurunan tekanan bagi unit ini adalah agak
rendah berbanding siklon lain yang menyerlahkan keupayaan unit untuk menangkap
zarah halus pada tekanan rendah.
Kata kunci: Kecekapan
siklon; pancaran habuk; pelbagai siklon; pencemaran udara; penurunan tekanan
REFERENCES
Avci,
A. & Karagoz, I. 2003. Effects of flow and geometrical parameters on the
collection efficiency in cyclone separators. J. Aerosol. Sci. 34:
937-955.
Azadi,
M. 2012. An analytical study of the effect of inlet velocity on the cyclone
performance using mathematical models. Powder Technology 217: 121-127.
Benitez,
J. 1992. Process Engineering and Design for Air Pollution Control. New
Jersey: Prentice Hall.
Bhatia,
M.U. & Cheremisinoff, P.N. 1993. Pollution control and Design for
Industry. New York: Marcel Dekker.
Bohnet,
M., Gottschalk, O. & Morweiser, M. 1997. Modern design of aerocyclones. Adv.
Powder Technol. 8(2): 137-161.
Coker,
A.K. 1993. Understand cyclone design. Chem. Eng. Prog. 28: 51-55.
Farahani,
N.S.M., Tahmasbi, V., Safikhani, H. & Abbasi, A. 2011. Effects of ribs on
flow pattern and performance of cyclone separator. Engineering Application
of Computional Fluid Dynamics 5(2): 180-187.
Hoffmann,
A.C. & Stein, L.E. 2007. Gas Cyclones and Swirl Tubes Principles, Design
and Operation. New York: Springer.
Lapple,
C.E. 1951. Process use many collector types. Chemical Engineering 58(5):
175-183.
Leith,
D. & Licht, W. 1996. The Collection Efficiency of Cyclone Type
Particle Collectors: A New Theoretical Approach. AIChE Symp. Ser. Air
Pollut. Control.
Licht,
W. & Koch, W.H. 1977. New design approach boosts cyclone efficiency. Chem.
Eng. Prog. 7: 80.
Lippmann,
M. & Chan, T.L. 1974. Calibration of dual-inlet cyclones for ‘respirable’
mass sampling. American Industrial Hygiene Association Journal 35(4):
189-200.
Lorenz,
T. 1994. Heissgasentstaubung mit zyklonen. Düsseldorf, Germany:
VDI-Fortschrittsberichte.
Madhumita,
B.R., Pouwel, E.L., Hoffman, A.C., Plomp, A. & Beumer, M.I.L. 1998.
Improving the removal efificiency of industrial-scale cyclones for particles
smaller than five micron. International Journal of Mineral Processing 53:
39-47.
Mothes,
H. & Löffler, F. 1988. Prediction of particle removal in cyclone
separators. Int. Chem. Eng. 28(2): 51-55.
Norelyza,
H. & Rashid, M. 2013. Performance of MR-deDuster: A case study of a palm
oil mill plant. Advance Materials Research 664: 133-137.
Norelyza,
H., Rashid, M., Hajar, S. & Nurnadia, A. 2014. MR-deDuster: A dust emission
separator in air pollution control. Jurnal Teknologi (Sciences & Engineering) 58: 85-88.
Rashid,
M., Chong, W.C., Ramli, M., Zainura, Z.N. & Norruwaida, J. 2013. Evaluation
of particulate emission from a palm oil mill boiler. Sains Malaysiana 42(9):
1289-1292.
Rongbiao,
X., Park, S.H. & Lee, K.W. 2001. Effects of cone dimension on cyclone
performance. Aerosol Science 32: 549-561.
Shepherd,
C. & Lapple, C. 1939. Flow pattern and pressure drop. Ind. and Eng.
Chem. 31: 972-984.
Stairmand,
C.J. 1951. The design and performance of cyclone separators. Transactions of
Industrial Chemical Engineers 29: 356-383.
Theodore,
L. 2008. Air Pollution Control Equipment Calculation. New Jersey: John
Wiley & Sons.
Theodore,
L. & Buonicore, A.J. 1988. Air Pollution Control Equipment. Florida:
CRC Press.
Wang,
H.B., Bao, Y.L., Zhao, M.Q., Yang, L.D. & Yu, H.B. 1990. Analogy simulation
of the properties of a circulating fluidized-bed boiler high-temperature
cyclone separator. J. Engineering for Thermal Energy and Power 5: 14-20.
Wanga,
W., Zhang, P., Wang, L., Chen, G., Li, J. & Li, X. 2010. Structure and
performance of the circumfluent cyclone. Powder Technology 200: 158-163.
Youngmin,
J., Tien, C. & Ray, M.B. 2000. Development of a post cyclone to improve the
efficiency of reverse flow cyclones. Powder Technology 113: 97-108.
*Corresponding
author; email: rashidyusof.kl@utm.my
|