Sains Malaysiana 44(6)(2015):
771–778
A Study on the Characteristics of Palm-Based
Polyurethane as a Lightweight Aggregate in Concrete Mix
(Kajian terhadap Sifat Poliuretana Sawit sebagai
Agregat Ringan dalam Campuran Konkrit)
KAMARUL AINI MOHD SARI1, SOHIF MAT1,2, KHAIRIAH HAJI BADRI3*
& MUHAMMAD FAUZI MOHD ZAIN4
1Faculty of Engineering
Technology, Universiti Tun Hussein Onn Malaysia
86400 Batu Pahat, Johor
Darul Takzim, Malaysia
2Solar Energy Research
Institute, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
3Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
4Faculty of Engineering
and Built Environment, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
Research on the development of
lightweight concrete (LWC) utilizing wastes and natural resources as lightweight aggregates (LWA)
is increasingly gaining attention worldwide due to sustainable and
environmental concerns. A new alternative is using palm kernel oil polyol (PKO-p)-based
polyurethane (PU) as filler. Rigid PU is
a block copolymer comprised of a monomeric PKO-p
and 2, 4-methylene diphenyl diisocyanate (crude MDI).
The property of PKO-p, its ratio with crude MDI and
reaction time were determined. The reaction time showed the average of 60 s for
cream time and 95 s for rise time with maximum hardening time of 8 min. The
reaction between PKO-p to MDI at
1:1 ratio resulted in a very short hardening time (within 2 min). The
compressive strength of the rigid PU was at 7.0 MPa
at a density of 206 kg/m3. Further increase in
the amount of PKO-p increased the density and compressive strength of
the PU. PU aggregate in the concrete mixture
was added at 1 to 5% (w/w) to obtain concrete with density of less than 1800
kg/m3. The resulting concrete has excellent compressive
strength (17.5 MPa) and thermal conductivity (0.24
W/m⋅K). The
results showed that physical properties of PU played
the most significant effect on the physical and mechanical properties of the
lightweight concrete.
Keywords: Concrete mix; lightweight
aggregate; palm kernel oil polyol; rigid polyurethane
ABSTRAK
Penyelidikan
dalam membangunkan konkrit ringan (LWC) menggunakan bahan buangan
dan sumber semula jadi sebagai agregat ringan (LWA)
semakin mendapat perhatian dunia disebabkan oleh faktor kelestarian
bahan dan kebimbangan terhadap alam sekitar. Satu alternatif
baru dalam menghasilkan poliuretana (PU) sebagai pengisi adalah dengan
menggunakan bahan berasaskan minyak isirung sawit (PKO).
Poliuretana tegar adalah blok kopolimer
yang mengandungi poliol PKO (PKO-p)
dan 2,4-difenilmetana diisosianat (MDI mentah). Sifat PKO-p,
nisbahnya kepada MDI dan masa tindak balasnya ditentukan.
Masa tindak balas menunjukkan purata masa masing-masing 60 dan 90
s untuk masa pengkriman dan masa menaik dengan masa pematangan maksimum
8 min. Tindak balas antara PKO-p dengan MDI pada
nisbah 1:1 menunjukkan masa pematangan yang singkat (2 min). Kekuatan
mampatan PU tegar adalah 7.0 MPa
pada ketumpatan 206 kg/m3. Penambahan PKO-p meningkatkan ketumpatan dan kekuatan
mampatan PU. Jumlah agregat PU
halus dalam campuran konkrit ditambah daripada 1 hingga
5% (b/b) untuk mencapai ketumpatan konkrit kurang daripada 1800
kg/m3. Konkrit
ringan yang dihasilkan sangat baik daripada segi kekuatan mampatan (17.5 MPa) dan kekonduksian terma (0.24
W/m⋅K). Keputusan menunjukkan bahawa sifat fizikal PU menunjukkan
kesan paling ketara ke atas sifat fizikal dan mekanik konkrit ringan.
Kata
kunci: Agregat ringan; campuran konkrit; poliol minyak isirung sawit;
poliuretana tegar
REFERENCES
Abdullah, N. & Sulaiman, F. 2013. Chapter 3:
The oil palm wastes in Malaysia. In Biomass Now-Sustainable Growth and Use,
edited by Matovic, M.D. New York: InTech Publication.
Agubra,
V.A., Owuor, P.S. & Hosur, M.V. 2013. Influence of nanoclay dispersion
methods on the mechanical behavior of E-Glass/Epoxy nanocomposites. Nanomaterials 3(3): 550-563.
Akcay, B.
& Tasdemir, M.A. 2006. Measuring, monitoring and modeling
concrete properties. In Effects of Lightweight Aggregates on
Autogenous Deformation in Concrete, edited by Konsta-Gdoutos, M.S.
Netherland: Springer Netherland.
Akil, H.M.
& Omar, M.F. 2011. Kenaf fiber reinforced composites: A review. Journal
of Materials and Design 32(8): 4107-4121.
Alengaram,
U.J. & Jumaat, M.Z. 2013. Utilization of oil palm kernel shell as
lightweight aggregate in concrete: A review. Journal of Construction and
Building Materials 38: 161-172.
Ashida, K.
2007. Polyurethane and Related Foams: Chemistry and Technology. London:
Taylor & Francis.
Badri, K.H.
2012. Biobased polyurethane from palm kernel oil-based
polyol. In Polyurethane, edited
by Fahmina Zafar & Eram Sharmin. Croatia: InTech Publishing. pp. 447-470.
Badri, K.H.
2011. Process for the Production of Vegetable Oil-based Polyurethane Polyols.
MyIPO. Malaysia. MY 145094-A.
Badri, K.H., Wong, C.S., Shahrom, M.S.R., Liow, C.T., Yuhana, N.
& Norzali, N.R.A. 2010. FTIR spectroscopy
analysis of the prepolymerization of palm-based polyurethane. Journal of Solid State Science and Technology 18(2): 1-8.
Badri, K.H.,
Zakaria, O. & Ahmad, S.H. 2004. Rigid polyurethane foams from oil palm
resources. Journal of Materials Science 39: 5541-5542.
Bakri,
A.M.M.A., Ruzaidi, G.C.M., Norazian, M.N., Kamarudin, H. & Abu Bakar, M.D.
2007. Preliminary study on concrete with polystyrene waste
coarse aggregate. CIRAIC (Construction Industry
Research Achievement in the Construction Industry). CIDB. pp. 64-67.
Chandra, S.
& Berntsson, L. 2003. Lightweight Aggregate Concrete: Science,
Technology and Application. New York: Noyes Publications.
David, P.M.,
Zimmer, A.S., Bolduc, M.J. & Hopps, E.R. 2013. Is Lightweight Concrete
All Wet? Structure magazine. U.S.: Copper Creek Companies, Inc.
Demharter, A. 1996. Polyurethane
rigid foam, a proven thermal insulating material for applications between
+130°C and -196°C. Journal of Cryogenics 38: 113-117.
Emecole, Inc. 2014. Use of
Hydrophobic and Hydrophilic Polyurethane Foams for Crack Injection. http://www. emecole.com/pages/Use-of-Hydrophobic-and-Hydrophilic-
Polyurethane-Foams-for-Crack-Injection.html.
FIP Manual
of lightweight Aggregate Concrete. 1983. Int. Organization for the
Development of Structural Concrete. New York: John Wiley and Sons.
Fraj, A.B.,
Kismi, M. & Mounanga, P. 2001. Volarization of coarse
rigid polyurethane foam waste in lightweight aggregate concrete. Journal
of Construction and Building Materials 24: 1069-1077.
Gadea, J., Rodrigues, A., Campos, P.L., Garabito, J. &
Calderon, V. 2010. Lightweight mortar made with recycled polyurethane foam. Journal
of Cement & Concrete Composites 32: 672- 677.
Gunasekaran, K., Kumar, P.S. & Lakshmipathy, M. 2011. Mechanical
and bond properties of coconut shell concrete. Journal of Construction and
Building Materials 25(1): 92-98.
Ismail,
T.N.M.T., Satar, M.N., Soi, H.S., Hassan, H.A., Lye, O.T. & Ahmad, S. 2006. Palm-based Rigid Polyurethane Foams. MPOB Information
Series June TT No 343.
Jawaid, M., Khalil, H.P.S.A., Bhat, A.H. & Abu Baker, A. 2011. Impact
properties of natural fiber hybrid reinforced epoxy composites. Journal of Advanced Materials Research 264- 265: 688-693.
Jones, M.R.
& MacCarthy, A. 2005. Behaviour and assessment of foamed concrete for
construction applications. In Use of Foamed Concrete in Construction,
edited by Dhir, R.K., Newlands, M.D. & McCarthy, A.
London: Thomas Telford. pp 61-88.
Kan, A.K.
& Demirboga, R. 2009. A novel material for lightweight
concrete production. Journal of Cement & Concrete Composites 31:
489-495.
Kan, A.K.
& Demirboga, R. 2007. Effect of cement and EPS beads ratios on compressive
strength and density of lightweight concrete. Indian Journal of Engineering
& Materials Sciences 14: 158-162.
Khalil, H.P.S.A., Yusra, A.F.I., Bhat, A.H. & Jawaid, M. 2010. Cell wall
ultrastructure, anatomy, lignin distribution and chemical composition of
Malaysian cultivated kenaf fiber. Industrial Crops and Products 31: 113-121.
Kim, H.K., Jeon, H.J. & Lee, H.K. 2012. Workability and mechanical,
acoustic and thermal properties of liightweight aggregate concrete with a high
volume of entrained air. Journal of Construction and Building Materials 29:
193-200.
Kolop, R., Ibrahim, W.H. &
Eng, J.E. 2010. Properties of cement blocks containing high content of oil
palm empty fruit bunches (EFB) fibers. International
Conference on Civil Engineering 2008. UMP: UMP Publisher.
Laukaitis,
A., Zuraukast, R. & Keriene, J. 2005. The effect of foam
polystyrene granules on cement composite properties. Journal of
Cement & Concrete Composites 27: 41-47.
Madandoust,
R., Ranjbar, M. & Mousavi, S.Y. 2011. An investigation on the fresh properties
of self-compacted lightweight concrete containing expanded polystyrene. Journal
of Construction and Building Materials 25: 3721- 3731.
Makal, U. & Wynne,
K.J. 2005. Water induced hydrophobic surface. Langmuir 21(9): 3742-3745.
Mannan,
M.A. & Ganapathy. C. 2001. Mix design for oil palm shell concrete. Journal
of Cement & Concrete Research 31(9): 1323-1325.
Mehta, P.K. &
Monteiro, P.J. 2006. Concrete: Microstructure, Properties and Materials. New
York: McGraw-Hill.
Mounanga, P., Gebongbon,
W., Poullain, P. & Turcry, P. 2008. Proportioning and characterization of
lightweight concrete mixtures made with rigid polyurethane foam wastes. Journal
of Cement & Concrete Composites 30: 806-814.
Nambiar, E.K. &
Ramamurthy, K. 2006. Influence of filler type on the properties of foam
concrete. Journal of Cement & Concrete Composites 28: 475-480.
Saman,
H.M., Ibrahim, A., Ridzuan, A.R.M. & Kamaruddin, K. 2005. Optimization
of foamed concrete mix of different sand-cement ratio and curing conditions. In Use of Foamed Concrete in Construction,
edited by Dhir, R.K., Newlands, M.D. & McCarthy, A.
London: Thomas. pp. 37-44.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2010. Mix design and mechanical properties of
oil palm shell lightweight aggregate concrete: A review. Journal of the
Physical Sciences 5(14): 2127-2134.
Su'ait, M.S., Ahmad, A.,
Badri, K.H., Mohamed, N.S., Rahman, M.Y.A., Azanza Ricardo, C.L.
& Scardi, P. 2014. The potential of polyurethane
bio-based solid polymer electrolyte for dye-sensitized solar cell
application. International Journal of Hydrogen Energy
39: 3005-3017.
Woods, G. 1990. The ICI Polyurethane Book. New York: John Wiley &
Sons.
Yerramala, A. &
Ramachandrudu, C. 2012. Properties of concrete with coconut
shells as aggregate replacement. International
Journal of Engineering Inventions 1(6): 21-31.
Yi,
X., Jiang, L., Xu, J. & Li, Y. 2012. Mechanical properties of expanded
polystyrene lightweight aggregate concrete and brick. Journal of
Construction and Building Materials 27: 32-38.
*Corresponding author; email: kaybadri@ukm.edu.my
|