Sains Malaysiana 44(6)(2015): 771–778

 

A Study on the Characteristics of Palm-Based Polyurethane as a Lightweight Aggregate in Concrete Mix

(Kajian terhadap Sifat Poliuretana Sawit sebagai Agregat Ringan dalam Campuran Konkrit)

KAMARUL AINI MOHD SARI1, SOHIF MAT1,2, KHAIRIAH HAJI BADRI3*

& MUHAMMAD FAUZI MOHD ZAIN4

1Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia

86400 Batu Pahat, Johor Darul Takzim, Malaysia

 

2Solar Energy Research Institute, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

4Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 January 2014/Accepted: 15 November 2014

 

ABSTRACT

Research on the development of lightweight concrete (LWC) utilizing wastes and natural resources as lightweight aggregates (LWA) is increasingly gaining attention worldwide due to sustainable and environmental concerns. A new alternative is using palm kernel oil polyol (PKO-p)-based polyurethane (PU) as filler. Rigid PU is a block copolymer comprised of a monomeric PKO-p and 2, 4-methylene diphenyl diisocyanate (crude MDI). The property of PKO-p, its ratio with crude MDI and reaction time were determined. The reaction time showed the average of 60 s for cream time and 95 s for rise time with maximum hardening time of 8 min. The reaction between PKO-p to MDI at 1:1 ratio resulted in a very short hardening time (within 2 min). The compressive strength of the rigid PU was at 7.0 MPa at a density of 206 kg/m3. Further increase in the amount of PKO-p increased the density and compressive strength of the PU. PU aggregate in the concrete mixture was added at 1 to 5% (w/w) to obtain concrete with density of less than 1800 kg/m3. The resulting concrete has excellent compressive strength (17.5 MPa) and thermal conductivity (0.24 W/mK). The results showed that physical properties of PU played the most significant effect on the physical and mechanical properties of the lightweight concrete.

 

Keywords: Concrete mix; lightweight aggregate; palm kernel oil polyol; rigid polyurethane

 

ABSTRAK

Penyelidikan dalam membangunkan konkrit ringan (LWC) menggunakan bahan buangan dan sumber semula jadi sebagai agregat ringan (LWA) semakin mendapat perhatian dunia disebabkan oleh faktor kelestarian bahan dan kebimbangan terhadap alam sekitar. Satu alternatif baru dalam menghasilkan poliuretana (PU) sebagai pengisi adalah dengan menggunakan bahan berasaskan minyak isirung sawit (PKO). Poliuretana tegar adalah blok kopolimer yang mengandungi poliol PKO (PKO-p) dan 2,4-difenilmetana diisosianat (MDI mentah). Sifat PKO-p, nisbahnya kepada MDI dan masa tindak balasnya ditentukan. Masa tindak balas menunjukkan purata masa masing-masing 60 dan 90 s untuk masa pengkriman dan masa menaik dengan masa pematangan maksimum 8 min. Tindak balas antara PKO-p dengan MDI pada nisbah 1:1 menunjukkan masa pematangan yang singkat (2 min). Kekuatan mampatan PU tegar adalah 7.0 MPa pada ketumpatan 206 kg/m3. Penambahan PKO-p meningkatkan ketumpatan dan kekuatan mampatan PU. Jumlah agregat PU halus dalam campuran konkrit ditambah daripada 1 hingga 5% (b/b) untuk mencapai ketumpatan konkrit kurang daripada 1800 kg/m3. Konkrit ringan yang dihasilkan sangat baik daripada segi kekuatan mampatan (17.5 MPa) dan kekonduksian terma (0.24 W/mK). Keputusan menunjukkan bahawa sifat fizikal PU menunjukkan kesan paling ketara ke atas sifat fizikal dan mekanik konkrit ringan.

 

Kata kunci: Agregat ringan; campuran konkrit; poliol minyak isirung sawit; poliuretana tegar

REFERENCES

Abdullah, N. & Sulaiman, F. 2013. Chapter 3: The oil palm wastes in Malaysia. In Biomass Now-Sustainable Growth and Use, edited by Matovic, M.D. New York: InTech Publication.

Agubra, V.A., Owuor, P.S. & Hosur, M.V. 2013. Influence of nanoclay dispersion methods on the mechanical behavior of E-Glass/Epoxy nanocomposites. Nanomaterials 3(3): 550-563.

Akcay, B. & Tasdemir, M.A. 2006. Measuring, monitoring and modeling concrete properties. In Effects of Lightweight Aggregates on Autogenous Deformation in Concrete, edited by Konsta-Gdoutos, M.S. Netherland: Springer Netherland.

Akil, H.M. & Omar, M.F. 2011. Kenaf fiber reinforced composites: A review. Journal of Materials and Design 32(8): 4107-4121.

Alengaram, U.J. & Jumaat, M.Z. 2013. Utilization of oil palm kernel shell as lightweight aggregate in concrete: A review. Journal of Construction and Building Materials 38: 161-172.

Ashida, K. 2007. Polyurethane and Related Foams: Chemistry and Technology. London: Taylor & Francis.

Badri, K.H. 2012. Biobased polyurethane from palm kernel oil-based polyol. In Polyurethane, edited by Fahmina Zafar & Eram Sharmin. Croatia: InTech Publishing. pp. 447-470.

Badri, K.H. 2011. Process for the Production of Vegetable Oil-based Polyurethane Polyols. MyIPO. Malaysia. MY 145094-A.

Badri, K.H., Wong, C.S., Shahrom, M.S.R., Liow, C.T., Yuhana, N. & Norzali, N.R.A. 2010. FTIR spectroscopy analysis of the prepolymerization of palm-based polyurethane. Journal of Solid State Science and Technology 18(2): 1-8.

Badri, K.H., Zakaria, O. & Ahmad, S.H. 2004. Rigid polyurethane foams from oil palm resources. Journal of Materials Science 39: 5541-5542.

Bakri, A.M.M.A., Ruzaidi, G.C.M., Norazian, M.N., Kamarudin, H. & Abu Bakar, M.D. 2007. Preliminary study on concrete with polystyrene waste coarse aggregate. CIRAIC (Construction Industry Research Achievement in the Construction Industry). CIDB. pp. 64-67.

Chandra, S. & Berntsson, L. 2003. Lightweight Aggregate Concrete: Science, Technology and Application. New York: Noyes Publications.

David, P.M., Zimmer, A.S., Bolduc, M.J. & Hopps, E.R. 2013. Is Lightweight Concrete All Wet? Structure magazine. U.S.: Copper Creek Companies, Inc.

Demharter, A. 1996. Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and -196°C. Journal of Cryogenics 38: 113-117.

Emecole, Inc. 2014. Use of Hydrophobic and Hydrophilic Polyurethane Foams for Crack Injection. http://www. emecole.com/pages/Use-of-Hydrophobic-and-Hydrophilic- Polyurethane-Foams-for-Crack-Injection.html.

FIP Manual of lightweight Aggregate Concrete. 1983. Int. Organization for the Development of Structural Concrete. New York: John Wiley and Sons.

Fraj, A.B., Kismi, M. & Mounanga, P. 2001. Volarization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Journal of Construction and Building Materials 24: 1069-1077.

Gadea, J., Rodrigues, A., Campos, P.L., Garabito, J. & Calderon, V. 2010. Lightweight mortar made with recycled polyurethane foam. Journal of Cement & Concrete Composites 32: 672- 677.

Gunasekaran, K., Kumar, P.S. & Lakshmipathy, M. 2011. Mechanical and bond properties of coconut shell concrete. Journal of Construction and Building Materials 25(1): 92-98.

Ismail, T.N.M.T., Satar, M.N., Soi, H.S., Hassan, H.A., Lye, O.T. & Ahmad, S. 2006. Palm-based Rigid Polyurethane Foams. MPOB Information Series June TT No 343.

Jawaid, M., Khalil, H.P.S.A., Bhat, A.H. & Abu Baker, A. 2011. Impact properties of natural fiber hybrid reinforced epoxy composites. Journal of Advanced Materials Research 264- 265: 688-693.

Jones, M.R. & MacCarthy, A. 2005. Behaviour and assessment of foamed concrete for construction applications. In Use of Foamed Concrete in Construction, edited by Dhir, R.K., Newlands, M.D. & McCarthy, A. London: Thomas Telford. pp 61-88.

Kan, A.K. & Demirboga, R. 2009. A novel material for lightweight concrete production. Journal of Cement & Concrete Composites 31: 489-495.

Kan, A.K. & Demirboga, R. 2007. Effect of cement and EPS beads ratios on compressive strength and density of lightweight concrete. Indian Journal of Engineering & Materials Sciences 14: 158-162.

Khalil, H.P.S.A., Yusra, A.F.I., Bhat, A.H. & Jawaid, M. 2010. Cell wall ultrastructure, anatomy, lignin distribution and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products 31: 113-121.

Kim, H.K., Jeon, H.J. & Lee, H.K. 2012. Workability and mechanical, acoustic and thermal properties of liightweight aggregate concrete with a high volume of entrained air. Journal of Construction and Building Materials 29: 193-200.

Kolop, R., Ibrahim, W.H. & Eng, J.E. 2010. Properties of cement blocks containing high content of oil palm empty fruit bunches (EFB) fibers. International Conference on Civil Engineering 2008. UMP: UMP Publisher.

Laukaitis, A., Zuraukast, R. & Keriene, J. 2005. The effect of foam polystyrene granules on cement composite properties. Journal of Cement & Concrete Composites 27: 41-47.

Madandoust, R., Ranjbar, M. & Mousavi, S.Y. 2011. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Journal of Construction and Building Materials 25: 3721- 3731.

Makal, U. & Wynne, K.J. 2005. Water induced hydrophobic surface. Langmuir 21(9): 3742-3745.

Mannan, M.A. & Ganapathy. C. 2001. Mix design for oil palm shell concrete. Journal of Cement & Concrete Research 31(9): 1323-1325.

Mehta, P.K. & Monteiro, P.J. 2006. Concrete: Microstructure, Properties and Materials. New York: McGraw-Hill.

Mounanga, P., Gebongbon, W., Poullain, P. & Turcry, P. 2008. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Journal of Cement & Concrete Composites 30: 806-814.

Nambiar, E.K. & Ramamurthy, K. 2006. Influence of filler type on the properties of foam concrete. Journal of Cement & Concrete Composites 28: 475-480.

Saman, H.M., Ibrahim, A., Ridzuan, A.R.M. & Kamaruddin, K. 2005. Optimization of foamed concrete mix of different sand-cement ratio and curing conditions. In Use of Foamed Concrete in Construction, edited by Dhir, R.K., Newlands, M.D. & McCarthy, A. London: Thomas. pp. 37-44.

Shafigh, P., Jumaat, M.Z. & Mahmud, H. 2010. Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review. Journal of the Physical Sciences 5(14): 2127-2134.

Su'ait, M.S., Ahmad, A., Badri, K.H., Mohamed, N.S., Rahman, M.Y.A., Azanza Ricardo, C.L. & Scardi, P. 2014. The potential of polyurethane bio-based solid polymer electrolyte for dye-sensitized solar cell application. International Journal of Hydrogen Energy 39: 3005-3017.

Woods, G. 1990. The ICI Polyurethane Book. New York: John Wiley & Sons.

Yerramala, A. & Ramachandrudu, C. 2012. Properties of concrete with coconut shells as aggregate replacement. International Journal of Engineering Inventions 1(6): 21-31.

Yi, X., Jiang, L., Xu, J. & Li, Y. 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Journal of Construction and Building Materials 27: 32-38.

 

 

*Corresponding author; email: kaybadri@ukm.edu.my