Sains Malaysiana 44(6)(2015): 779–785

 

pH Sensitive Hydrogel Based on Poly(Acrylic Acid) and Cellulose Nanocrystals

(Hidrogel Sensitif terhadap pH Berasaskan Poli(Asid Akrilik) Diperkuatkan Selulosa Nanohablur)

 

LIM SZE LIM, ISHAK AHMAD* & AZWAN MAT LAZIM

Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,

Selangor Darul Ehsan, Malaysia

 

Received: 15 January 2014/Accepted: 15 November 2014

 

ABSTRACT

The purpose of this study was to produce a novel pH sensitive hydrogel with superior thermal stability, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) in CNC suspension. The mixture was casted onto petri dish to obtain disc shape hydrogel. PAA/cellulose hydrogel with the same composition ratio were also prepared as control. The effect of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH was studied. The obtained hydrogel was further subjected to different tests such as thermogravimetric analysis (TGA) to study the thermal behavior, Fourier transform infrared for functional group identification and swelling test for swelling behavior at different pH. The cross-linking of PAA was verified with FTIR with the absence of C=C double bond. In TGA test, PAA/CNC hydrogel showed significantly higher thermal stability compared with pure PAA hydrogel. The hydrogel obtained showed excellent pH sensitivity and experienced maximum swelling at pH7. The PAA/CNC hydrogel can be developed further as drug carrier.

 

Keywords: Acrylic acid; cellulose nanocrystals; hydrogel; swelling behavior

 

ABSTRAK

Objektif kajian ini adalah untuk menghasilkan hidrogel poli(asid akrilik) (PAA) diperkuatkan selulosa nanohablur (CNC) yang bukan sahaja sensitif terhadap rangsangan pH tetapi juga mempunyai sifat terma yang baik. CNC diekstrak daripada serabut kenaf melalui rawatan alkali dan rawatan pelunturan dan diikuti hidrolisis asid. Asid akrilik (AA) ditautsilangkan dengan menggunakan agen tautsilang (N,N-metilenabisakrilamid) dalam ampaian CNC. Campuran kemudian dituang ke dalam piring petri panas untuk mendapatkan hidrogel yang berbentuk cakera. Hidrogel PAA/selulosa dengan komposisi yang sama juga telah dihasilkan sebagai kawalan. Kesan parameter tindak balas seperti nisbah PAA dan CNC terhadap sifat pembengkakan hidrogel telah dikaji. Hidrogel yang dihasilkan diciri dengan analisis termogravimetri (TGA) untuk mengkaji sifat terma hidrogel yang dihasilkan. Transformasi Fourier inframerah pula digunakan untuk mengenal pasti kumpulan berfungsi hidrogel. Selain itu, ujian pembengkakan juga telah dijalankan untuk mengkaji sifat pembengkakan hidrogel pada pH yang berbeza. Kehilangan puncak C=C membuktikan bahawa asid akrilik telah berjaya ditautsilangkan kepada poli(asid akrilik). Dalam analisis TGA pula, hidrogel PAA/CNC menunjukkan kestabilan terma yang lebih baik berbanding dengan hidrogel PAA. Hidrogel yang dihasilkan adalah sensitif terhadap perubahan pH dan mencapai pembengkakan maksimum pada pH7. Hidrogel PAA/CNC mempunyai potensi untuk dijadikan pembawa ubat secara terkawal.

 

Kata kunci: Asid akrilik; hidrogel; selulosa nanohablur; sifat pembengkakan

 

 

REFERENCES

 

Akala, E.O., Kopečková, P. & Kopeček, J. 1998. Novel pH-sensitive hydrogels with adjustable swelling kinetics. Biomaterials 19(11-12): 1037-1047.

Alemdar, A. & Sain, M. 2008. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68(2): 557-565.

Anirudhan, T.S. & Rejeena, S.R. 2012. Poly(acrylic acid)- modified poly(glycidylmethacrylate)-grafted nanocellulose as matrices for the adsorption of lysozyme from aqueous solutions. Chemical Engineering Journal 187: 150-159.

Arunbabu, D., Shahsavan, H., Zhang, W. & Zhao, B. 2012. Poly(AAc-co-MBA) hydrogel films: Adhesive and mechanical properties in aqueous medium. The Journal of Physical Chemistry B 117(1): 441-449.

Bardajee, G.R., Pourjavadi, A., Ghavami, S., Soleyman, R. & Jafarpour, F. 2011. UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon. Journal of Photochemistry and Photobiology B: Biology 102(3): 232-240.

Bayramgil, N.P. 2008. Thermal degradation of [poly(N-vinylimidazole)–polyacrylic acid] interpolymer complexes. Polymer Degradation and Stability 93(8): 1504-1509.

Bera, A., Misra, R.K. & Singh, S.K. 2013. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid–polyacrylonitrile copolymeric hydrogels. Radiation Physics and Chemistry 91: 180-185.

Bondeson, D., Mathew, A. & Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2): 171-180.

Censi, R., Schuurman, W., Malda, J., Di Dato, G., Burgisser, P.E., Dhert, W.J.A., Van Nostrum, C.F., Di Martino, P., Vermonden, T. & Hennink, W.E. 2011. A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Advanced Functional Materials 21(10): 1833-1842.

Cha, R., He, Z. & Ni, Y. 2012. Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydrate Polymers 88(2): 713-718.

Chang, M., Chung, M., Lee, B.S. & Kwak, C.H. 2006. Structure, magnetic and ion-exchange properties of self-assembled triaza-copper(II)-oxalate hybrides having nanoscale one-dimensional channel. Journal of Nanoscience and Nanotechnology 6(11): 3338-3342.

Da Silva, R. & Ganzarolli de Oliveira, M. 2007. Effect of the cross-linking degree on the morphology of poly(NIPAAm-co-AAc) hydrogels. Polymer 48(14): 4114-4122.

Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O. & Pasquini, D. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Industrial Crops and Products 42: 480-488.

Habibi, Y., Lucia, L.A. & Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.

Hellio, D. & Djabourov, M. 2006. Physically and chemically crosslinked gelatin gels. Macromolecular Symposia 241(1): 23-27.

Henrique, M.A., Silvério, H.A., Flauzino Neto, W.P. & Pasquini, D. 2013. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. Journal of Environmental Management 121: 202-209.

Huang, Y., Lu, J. & Xiao, C. 2007. Thermal and mechanical properties of cationic guar gum/poly(acrylic acid) hydrogel membranes. Polymer Degradation and Stability 92(6): 1072-1081.

Janković, B., Adnađević, B. & Jovanović, J. 2007. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis. Thermochimica Acta 452(2): 106-115.

Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99.

Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. & Sheltami, R. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.

Kim, S.J., Kim, H., Park, S.J. & Kim, S.I. 2004. Shape change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl sulfonic acid) in electric fields. Sensors and Actuators A: Physical 115(1): 146-150.

Kim, S.J., Lee, K.J., Lee, S.M., Kim, I.Y. & Kim, S.I. 2004. Water behavior of poly(acrylic acid)/poly (acrylonitrile) semi-interpenetrating polymer network hydrogels. High Performance Polymers 16(4): 625-635.

Laftah, W.A. & Hashim, S. 2013. The influence of plant natural fibers on swelling behavior of polymer hydrogels. Journal of Composite Materials 48(5): 555-569.

Liu, H., Wang, D., Shang, S. & Song, Z. 2011. Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydrate Polymers 83(1): 38-43.

Mohd Amin, M.C.I., Ahmad, N., Halib, N. & Ahmad, I. 2012. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88(2): 465-473.

Needleman, I.G. & Smales, F.C. 1995. In vitro assessment of bioadhesion for periodontal and buccal drug delivery. Biomaterials 16(8): 617-624.

Oliveira Taipina, M., Ferrarezi, M., Yoshida, I. & de Gonçalves, M. 2013. Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1): 217-226.

Rahimi, N., Molin, D.G., Cleij, T.J., van Zandvoort, M.A. & Post, M.J. 2012. Electrosensitive polyacrylic acid/fibrin hydrogel facilitates cell seeding and alignment. Biomacromolecules 13(5): 1448-1457.

Richard, B., Quilès, F., Carteret, C. & Brendel, O. 2014. Infrared spectroscopy and multivariate analysis to appraise α-cellulose extracted from wood for stable carbon isotope measurements. Chemical Geology 381(0): 168-179.

Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D. & Adhikari, B. 2010. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource Technology 101(9): 3182-3187.

Sahiner, N. 2013. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science 38(9): 1329-1356.

Sawpan, M.A., Pickering, K.L. & Fernyhough, A. 2011. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing 42(9): 1189-1196.

Scherzer, T., Beckert, A., Langguth, H., Rummel, S. & Mehnert, R. 1997. Electron beam curing of methacrylated gelatin. I. Dependence of the degree of crosslinking on the irradiation dose. Journal of Applied Polymer Science 63(10): 1303-1312.

Serpe, M.J., Jones, C.D. & Lyon, L.A. 2003. Layer-by-layer deposition of thermoresponsive microgel thin films. Langmuir 19(21): 8759-8764.

Sharifi, S., Blanquer, S.B.G., van Kooten, T.G. & Grijpma, D.W. 2012. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)– poly(ethylene glycol)–poly(trimethylene carbonate) macromonomers and nanoclay particles. Acta Biomaterialia 8(12): 4233-4243.

Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88(2): 772-779.

Shirsath, S.R., Patil, A.P., Patil, R., Naik, J.B., Gogate, P.R. & Sonawane, S.H. 2013. Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study. Ultrasonics Sonochemistry 20(3): 914- 923.

Sorbara, L., Jones, L. & Williams-Lyn, D. 2009. Contact lens induced papillary conjunctivitis with silicone hydrogel lenses. Contact Lens and Anterior Eye 32(2): 93-96.

Spagnol, C., Rodrigues, F.H.A., Pereira, A.G.B., Fajardo, A.R., Rubira, A.F. & Muniz, E.C. 2012. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydrate Polymers 87(3): 2038-2045.

Varga, Z., Molnar, K., Torma, V. & Zrinyi, M. 2010. Kinetics of volume change of poly(succinimide) gels during hydrolysis and swelling. Physical Chemistry Chemical Physics 12(39): 12670-12675.

Wang, W., Deng, L., Liu, S., Li, X., Zhao, X., Hu, R., Zhang, J., Han, H. & Dong, A. 2012. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer. Acta Biomaterialia 8(11): 3963-3973.

Wen, O.H., Kuroda, S.I. & Kubota, H. 2001. Temperature-responsive character of acrylic acid and N-isopropylacrylamide binary monomers-grafted celluloses. European Polymer Journal 37(4): 807-813.

Wu, N. & Li, Z. 2013. Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chemical Engineering Journal 215-216(0): 894-902.

Yuk, S., Cho, S. & Lee, H. 1992. Electric current-sensitive drug delivery systems using sodium alginate/polyacrylic acid composites. Pharmaceutical Research 9(7): 955-957.

Zhou, Y., Zhao, Y., Wang, L., Xu, L., Zhai, M. & Wei, S. 2012. Radiation synthesis and characterization of nanosilver/ gelatin/carboxymethyl chitosan hydrogel. Radiation Physics and Chemistry 81(5): 553-560.

Zuidema, J.M., Pap, M.M., Jaroch, D.B., Morrison, F.A. & Gilbert, R.J. 2011. Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomaterialia 7(4): 1634-1643.

 

 

*Corresponding author; email: gading@ukm.edu.my

 

 

 

previous