Sains Malaysiana 44(6)(2015):
779–785
pH Sensitive Hydrogel Based on
Poly(Acrylic Acid) and Cellulose Nanocrystals
(Hidrogel Sensitif terhadap pH Berasaskan
Poli(Asid Akrilik) Diperkuatkan Selulosa Nanohablur)
LIM SZE LIM, ISHAK AHMAD* & AZWAN MAT LAZIM
Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
The purpose of this study was to
produce a novel pH sensitive hydrogel with superior thermal stability, composed
of poly(acrylic acid) (PAA) and
cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber
through a series of alkali and bleaching treatments followed by acid
hydrolysis. PAA was then subjected to
chemical cross-linking using the cross-linking agent
(N,N-methylenebisacrylamide) in CNC suspension.
The mixture was casted onto petri dish to obtain disc shape hydrogel. PAA/cellulose hydrogel with the
same composition ratio were also prepared as control. The effect of reaction
conditions such as the ratio of PAA and CNC on the swelling behavior of
the hydrogel obtained towards pH was studied. The obtained hydrogel was further
subjected to different tests such as thermogravimetric analysis (TGA) to study the thermal
behavior, Fourier transform infrared for functional group identification and
swelling test for swelling behavior at different pH. The cross-linking of PAA was verified with FTIR with the absence of C=C
double bond. In TGA test, PAA/CNC hydrogel showed
significantly higher thermal stability compared with pure PAA hydrogel. The hydrogel obtained showed excellent pH sensitivity
and experienced maximum swelling at pH7. The PAA/CNC hydrogel can be developed further as drug carrier.
Keywords: Acrylic acid; cellulose
nanocrystals; hydrogel; swelling behavior
ABSTRAK
Objektif kajian ini adalah untuk
menghasilkan hidrogel poli(asid akrilik) (PAA)
diperkuatkan selulosa nanohablur (CNC)
yang bukan sahaja sensitif terhadap rangsangan pH tetapi juga mempunyai sifat
terma yang baik. CNC diekstrak
daripada serabut kenaf melalui rawatan alkali dan rawatan pelunturan dan
diikuti hidrolisis asid. Asid akrilik (AA)
ditautsilangkan dengan menggunakan agen tautsilang (N,N-metilenabisakrilamid)
dalam ampaian CNC. Campuran kemudian
dituang ke dalam piring petri panas untuk mendapatkan hidrogel yang berbentuk
cakera. Hidrogel PAA/selulosa
dengan komposisi yang sama juga telah dihasilkan sebagai kawalan. Kesan parameter
tindak balas seperti nisbah PAA dan CNC terhadap sifat pembengkakan
hidrogel telah dikaji. Hidrogel yang dihasilkan diciri dengan analisis
termogravimetri (TGA)
untuk mengkaji sifat terma hidrogel yang dihasilkan. Transformasi Fourier
inframerah pula digunakan untuk mengenal pasti kumpulan berfungsi hidrogel.
Selain itu, ujian pembengkakan juga telah dijalankan untuk mengkaji sifat
pembengkakan hidrogel pada pH yang berbeza. Kehilangan puncak C=C membuktikan
bahawa asid akrilik telah berjaya ditautsilangkan kepada poli(asid akrilik).
Dalam analisis TGA pula,
hidrogel PAA/CNC menunjukkan
kestabilan terma yang lebih baik berbanding dengan hidrogel PAA.
Hidrogel yang dihasilkan adalah sensitif terhadap perubahan pH dan mencapai
pembengkakan maksimum pada pH7. Hidrogel PAA/CNC mempunyai
potensi untuk dijadikan pembawa ubat secara terkawal.
Kata
kunci: Asid akrilik; hidrogel; selulosa nanohablur; sifat pembengkakan
REFERENCES
Akala, E.O.,
Kopečková, P. & Kopeček, J. 1998. Novel pH-sensitive hydrogels
with adjustable swelling kinetics. Biomaterials 19(11-12): 1037-1047.
Alemdar, A.
& Sain, M. 2008. Biocomposites from wheat straw nanofibers: Morphology,
thermal and mechanical properties. Composites Science and Technology 68(2):
557-565.
Anirudhan,
T.S. & Rejeena, S.R. 2012. Poly(acrylic acid)- modified poly(glycidylmethacrylate)-grafted
nanocellulose as matrices for the adsorption of lysozyme from aqueous
solutions. Chemical Engineering Journal 187: 150-159.
Arunbabu,
D., Shahsavan, H., Zhang, W. & Zhao, B. 2012. Poly(AAc-co-MBA) hydrogel
films: Adhesive and mechanical properties in aqueous medium. The Journal of
Physical Chemistry B 117(1): 441-449.
Bardajee,
G.R., Pourjavadi, A., Ghavami, S., Soleyman, R. & Jafarpour, F. 2011. UV-prepared
salep-based nanoporous hydrogel for controlled release of tetracycline
hydrochloride in colon. Journal of Photochemistry and Photobiology B:
Biology 102(3): 232-240.
Bayramgil,
N.P. 2008. Thermal degradation of [poly(N-vinylimidazole)–polyacrylic acid]
interpolymer complexes. Polymer Degradation and Stability 93(8):
1504-1509.
Bera, A., Misra,
R.K. & Singh, S.K. 2013. Structural and behavioral characteristics
of radiolytically synthesized polyacrylic acid–polyacrylonitrile
copolymeric hydrogels. Radiation Physics and Chemistry 91:
180-185.
Bondeson,
D., Mathew, A. & Oksman, K. 2006. Optimization of the isolation of
nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):
171-180.
Censi, R.,
Schuurman, W., Malda, J., Di Dato, G., Burgisser, P.E., Dhert, W.J.A., Van
Nostrum, C.F., Di Martino, P., Vermonden, T. & Hennink, W.E. 2011. A
printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for
tissue engineering. Advanced Functional Materials 21(10): 1833-1842.
Cha, R., He,
Z. & Ni, Y. 2012. Preparation and characterization of thermal/pH-sensitive
hydrogel from carboxylated nanocrystalline cellulose. Carbohydrate Polymers 88(2):
713-718.
Chang, M.,
Chung, M., Lee, B.S. & Kwak, C.H. 2006. Structure, magnetic and
ion-exchange properties of self-assembled triaza-copper(II)-oxalate hybrides
having nanoscale one-dimensional channel. Journal of Nanoscience and
Nanotechnology 6(11): 3338-3342.
Da Silva, R.
& Ganzarolli de Oliveira, M. 2007. Effect of the cross-linking degree on
the morphology of poly(NIPAAm-co-AAc) hydrogels. Polymer 48(14):
4114-4122.
Flauzino Neto,
W.P., Silvério, H.A., Dantas, N.O. & Pasquini, D. 2013.
Extraction and characterization of cellulose nanocrystals from agro-industrial
residue - Soy hulls. Industrial Crops and Products 42: 480-488.
Habibi, Y.,
Lucia, L.A. & Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry,
self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.
Hellio, D.
& Djabourov, M. 2006. Physically and chemically crosslinked gelatin gels. Macromolecular
Symposia 241(1): 23-27.
Henrique, M.A.,
Silvério, H.A., Flauzino Neto, W.P. & Pasquini, D. 2013.
Valorization of an agro-industrial waste, mango seed, by the extraction
and characterization of its cellulose nanocrystals. Journal of
Environmental Management 121: 202-209.
Huang, Y.,
Lu, J. & Xiao, C. 2007. Thermal and mechanical properties of cationic guar
gum/poly(acrylic acid) hydrogel membranes. Polymer Degradation and Stability 92(6): 1072-1081.
Janković,
B., Adnađević, B. & Jovanović, J. 2007. Application of
model-fitting and model-free kinetics to the study of non-isothermal
dehydration of equilibrium swollen poly (acrylic acid) hydrogel:
Thermogravimetric analysis. Thermochimica Acta 452(2): 106-115.
Johar, N.,
Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization
of cellulose fibres and nanocrystals from rice husk. Industrial Crops and
Products 37(1): 93-99.
Kargarzadeh,
H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. & Sheltami, R.
2012. Effects of hydrolysis conditions on the morphology, crystallinity, and
thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.
Kim, S.J., Kim, H., Park, S.J. & Kim, S.I. 2004. Shape
change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl
sulfonic acid) in electric fields. Sensors and Actuators A: Physical 115(1):
146-150.
Kim, S.J., Lee, K.J.,
Lee, S.M., Kim, I.Y. & Kim, S.I. 2004. Water behavior of poly(acrylic
acid)/poly (acrylonitrile) semi-interpenetrating polymer network hydrogels. High
Performance Polymers 16(4): 625-635.
Laftah, W.A. &
Hashim, S. 2013. The influence of plant natural fibers on swelling behavior of
polymer hydrogels. Journal of Composite Materials 48(5): 555-569.
Liu, H., Wang, D.,
Shang, S. & Song, Z. 2011. Synthesis and characterization of Ag-Pd alloy
nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydrate
Polymers 83(1): 38-43.
Mohd Amin, M.C.I.,
Ahmad, N., Halib, N. & Ahmad, I. 2012. Synthesis and characterization of
thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug
delivery. Carbohydrate Polymers 88(2): 465-473.
Needleman, I.G. &
Smales, F.C. 1995. In vitro assessment of bioadhesion for periodontal
and buccal drug delivery. Biomaterials 16(8): 617-624.
Oliveira Taipina, M.,
Ferrarezi, M., Yoshida, I. & de Gonçalves, M. 2013. Surface modification of
cotton nanocrystals with a silane agent. Cellulose 20(1): 217-226.
Rahimi, N., Molin, D.G.,
Cleij, T.J., van Zandvoort, M.A. & Post, M.J. 2012. Electrosensitive
polyacrylic acid/fibrin hydrogel facilitates cell seeding and alignment. Biomacromolecules 13(5): 1448-1457.
Richard, B., Quilès, F.,
Carteret, C. & Brendel, O. 2014. Infrared spectroscopy and multivariate
analysis to appraise α-cellulose extracted from wood for stable carbon
isotope measurements. Chemical Geology 381(0): 168-179.
Saha, P., Manna, S.,
Chowdhury, S.R., Sen, R., Roy, D. & Adhikari, B. 2010. Enhancement of
tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource
Technology 101(9): 3182-3187.
Sahiner, N. 2013. Soft
and flexible hydrogel templates of different sizes and various functionalities
for metal nanoparticle preparation and their use in catalysis. Progress in
Polymer Science 38(9): 1329-1356.
Sawpan, M.A., Pickering,
K.L. & Fernyhough, A. 2011. Effect of fibre treatments on interfacial shear
strength of hemp fibre reinforced polylactide and unsaturated polyester
composites. Composites Part A: Applied Science and Manufacturing 42(9):
1189-1196.
Scherzer, T., Beckert,
A., Langguth, H., Rummel, S. & Mehnert, R. 1997. Electron beam curing of
methacrylated gelatin. I. Dependence of the degree of crosslinking on the
irradiation dose. Journal of Applied Polymer Science 63(10): 1303-1312.
Serpe, M.J., Jones, C.D.
& Lyon, L.A. 2003. Layer-by-layer deposition of thermoresponsive microgel
thin films. Langmuir 19(21): 8759-8764.
Sharifi, S., Blanquer,
S.B.G., van Kooten, T.G. & Grijpma, D.W. 2012. Biodegradable nanocomposite
hydrogel structures with enhanced mechanical properties prepared by
photo-crosslinking solutions of poly(trimethylene carbonate)–
poly(ethylene glycol)–poly(trimethylene carbonate) macromonomers and nanoclay
particles. Acta Biomaterialia 8(12): 4233-4243.
Sheltami, R.M.,
Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of
cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate
Polymers 88(2): 772-779.
Shirsath, S.R., Patil,
A.P., Patil, R., Naik, J.B., Gogate, P.R. & Sonawane, S.H. 2013. Removal of
Brilliant Green from wastewater using conventional and ultrasonically prepared
poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study. Ultrasonics
Sonochemistry 20(3): 914- 923.
Sorbara, L., Jones, L.
& Williams-Lyn, D. 2009. Contact lens induced papillary conjunctivitis with
silicone hydrogel lenses. Contact Lens and Anterior Eye 32(2): 93-96.
Spagnol, C., Rodrigues,
F.H.A., Pereira, A.G.B., Fajardo, A.R., Rubira, A.F. & Muniz, E.C. 2012.
Superabsorbent hydrogel composite made of cellulose nanofibrils and
chitosan-graft-poly(acrylic acid). Carbohydrate Polymers 87(3):
2038-2045.
Varga, Z., Molnar, K.,
Torma, V. & Zrinyi, M. 2010. Kinetics of volume change of poly(succinimide)
gels during hydrolysis and swelling. Physical Chemistry Chemical Physics 12(39):
12670-12675.
Wang, W., Deng, L., Liu,
S., Li, X., Zhao, X., Hu, R., Zhang, J., Han, H. & Dong, A. 2012.
Adjustable degradation and drug release of a thermosensitive hydrogel based on
a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene
glycol)co-polymer. Acta Biomaterialia 8(11): 3963-3973.
Wen, O.H., Kuroda, S.I.
& Kubota, H. 2001. Temperature-responsive character of acrylic acid and
N-isopropylacrylamide binary monomers-grafted celluloses. European Polymer
Journal 37(4): 807-813.
Wu, N. & Li, Z.
2013. Synthesis and characterization of poly(HEA/MALA) hydrogel and its
application in removal of heavy metal ions from water. Chemical Engineering
Journal 215-216(0): 894-902.
Yuk, S., Cho, S. &
Lee, H. 1992. Electric current-sensitive drug delivery systems using sodium
alginate/polyacrylic acid composites. Pharmaceutical Research 9(7):
955-957.
Zhou, Y., Zhao, Y.,
Wang, L., Xu, L., Zhai, M. & Wei, S. 2012. Radiation synthesis and
characterization of nanosilver/ gelatin/carboxymethyl chitosan hydrogel. Radiation
Physics and Chemistry 81(5): 553-560.
Zuidema, J.M., Pap,
M.M., Jaroch, D.B., Morrison, F.A. & Gilbert, R.J. 2011. Fabrication and
characterization of tunable polysaccharide hydrogel blends for neural repair. Acta
Biomaterialia 7(4): 1634-1643.
*Corresponding author; email: gading@ukm.edu.my
|