Sains Malaysiana 44(6)(2015):
793–799
Effect of Cellulose Nanocrystals Content and pH
on Swelling Behaviour of Gelatin Based Hydrogel
(Kesan Kandungan Selulosa Nanohablur dan pH terhadap
Sifat Pembengkakan Hidrogel yang Berasaskan Gelatin)
OOI SHOK YIN1, ISHAK AHMAD1* & MOHD CAIRUL IQBAL MOHD AMIN2
1Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
2Faculty of Pharmacy,
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur, Malaysia
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
In this research, a novel method was
performed to obtain hydrogel with superior thermal stability by incorporation
of cellulose nanocrystals (CNC)
into gelatin based hydrogel. Glutaraldehyde was used as cross-linker due to its
high chemical reactivity towards NH2 group
on gelatin. Different ratio of gelatin/CNC hydrogel
was produced in order to study the effects of CNC towards the swelling behaviour and thermal stability of gelatin
based hydrogel. The obtained hydrogel was subjected to Fourier transform infrared
(FTIR) to verify that gelatin had
been cross-linked, swelling test with different pH for swelling behaviour and
thermogravimetric analysis (TGA)
for thermal stability. The presence of C=N stretching group in the FTIR spectrum for gelatin/CNC hydrogel indicated that the
cross-linking reaction between gelatin monomer had been successfully carried
out. The hydrogel showed impressive pH sensitivity and maximum swelling was
obtained at pH3. The TGA results
clearly showed that the incorporation of CNC into
gelatin was able to produce hydrogel with higher thermal stability compare to
neat gelatin.
Keywords: Cellulose nanocrystals;
cross-linking; gelatin; hydrogel; swelling behavior
ABSTRAK
Dalam kajian ini, kaedah baru telah
digunakan untuk menghasilkan hidrogel yang mempunyai kestabilan terma yang
lebih tinggi dengan penambahan selulosa nanohablur (CNC)
ke dalam hidrogel yang berasaskan gelatin. Glutaraldehid telah dipilih sebagai
agen taut silang bagi mentaut silangkan gelatin disebabkan ia mempunyai
kereaktifan kimia yang tinggi terhadap kumpulan NH2 pada gelatin. Hidrogel gelatin/CNC dengan nisbah yang berbeza telah dihasilkan untuk mengkaji kesan
penambahan CNC terhadap sifat
pembengkakan dan kestabilan terma hidrogel. Hidrogel yang dihasilkan telah
dicirikan dengan menggunakan transformasi Fourier inframerah (FTIR)
untuk mengesahkan terdapat tindak balas taut silang antara monomer gelatin. Ujian
pembengkakan pula dijalankan untuk mengkaji sifat pembengkakan hidrogel pada pH
yang berbeza manakala analisis termogravimetri (TGA)
pula digunakan untuk mengkaji kestabilan terma hidrogel yang dihasilkan.
Kewujudan puncak regangan kumpulan C=N pada spektrum FTIR menunjukkan bahawa monomer gelatin telah berjaya ditaut
silangkan. Hasil kajian menunjukkan bahawa hidrogel yang dihasilkan mempunyai
sensitiviti yang baik terhadap pH dan hidrogel mencapai nisbah pembengkakan maksimum
pada pH3. Analisis TGA pula
menunjukkan penambahan CNC ke
dalam hidrogel telah meningkatkan kestabilan terma hidrogel.
Kata kunci: Gelatin; hidrogel; selulosa nanohablur; sifat
pembengkakan; taut silang
REFERENCES
Azizi Samir, M.A.S.,
Alloin, F. & Dufresne, A. 2005. Review of recent research into cellulosic
whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.
Bell, C.L. & Peppas,
N.A. 1996. Water, solute and protein diffusion in physiologically responsive hydrogels
of poly (methacrylic acid-g-ethylene glycol). Biomaterials 17(12):
1203-1218.
Bigi, A., Cojazzi, G.,
Panzavolta, S., Roveri, N. & Rubini, K. 2002. Stabilization of gelatin
films by crosslinking with genipin. Biomaterials 23(24): 4827-4832.
Carvalho, R.A. &
Grosso, C.R.F. 2004. Characterization of gelatin based films modified with
transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids 18(5):
717-726.
Chen, J.P., Leu, Y.L.,
Fang, C.L., Chen, C.H. & Fang, J.Y. 2011a. Thermosensitive hydrogels
composed of hyaluronic acid and gelatin as carriers for the intravesical
administration of cisplatin. J. Pharm. Sci. 100(2): 655-666.
Chen, X., Yu, J., Zhang,
Z. & Lu, C. 2011b. Study on structure and thermal stability properties of
cellulose fibers from rice straw. Carbohydrate Polymers 85(1): 245-250.
Curcio, M., Gianfranco
Spizzirri, U., Iemma, F., Puoci, F., Cirillo, G., Parisi, O.I. & Picci, N.
2010. Grafted thermo-responsive gelatin microspheres as delivery systems in
triggered drug release. European Journal of Pharmaceutics and
Biopharmaceutics 76(1): 48-55.
Draye, J.P., Delaey, B.,
Van de Voorde, A., Van Den Bulcke, A., De Reu, B. & Schacht, E. 1998. In
vitro and in vivo biocompatibility of dextran dialdehyde
cross-linked gelatin hydrogel films. Biomaterials 19(18): 1677-1687.
Eichhorn, S.J. 2011.
Cellulose nanowhiskers: Promising materials for advanced applications. Soft
Matter. 7(2): 303-315.
Farris, S., Song, J.
& Huang, Q. 2009. Alternative reaction mechanism for the cross-linking of
gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry 58(2):
998-1003.
Frisk, M.L., Tepp, W.H.,
Lin, G., Johnson, E.A. & Beebe, D.J. 2007. Substrate-modified hydrogels for
autonomous sensing of botulinum neurotoxin type a. Chemistry of Materials 19(24):
5842-5844.
Frutos, G.,
Prior-Cabanillas, A., París, R. & Quijada-Garrido, I. 2010. A novel
controlled drug delivery system based on pH-responsive hydrogels included in
soft gelatin capsules. Acta Biomaterialia 6(12): 4650-4656.
Gojgini, S., Tokatlian,
T. & Segura, T. 2011. Utilizing cell-matrix interactions to modulate gene
transfer to stem cells inside hyaluronic acid hydrogels. Molecular
Pharmaceutics 8(5): 1582-1591.
Hou, Y., Schoener, C.A.,
Regan, K.R., Munoz-Pinto, D., Hahn, M.S. & Grunlan, M.A. 2010.
Photo-cross-linked pdmsstar-peg hydrogels: Synthesis, characterization, and
potential application for tissue engineering scaffolds. Biomacromolecules 11(3):
648-656.
Jagadeeshbabu, P.E.,
Suresh Kumar, R. & Maheswari, B. 2011. Synthesis and characterization of
temperature sensitive P-NIPAM macro/micro hydrogels. Colloids and Surfaces
A: Physicochemical and Engineering Aspects 384(1-3): 466-472.
Jain, S.K., Agrawal,
G.P. & Jain, N.K. 2006. A novel calcium silicate based microspheres of
repaglinide: In vivo investigations. Journal of Controlled Release 113(2):
111- 116.
Johar, N., Ahmad, I.
& Dufresne, A. 2012. Extraction, preparation and characterization of
cellulose fibres and nanocrystals from rice husk. Industrial Crops and
Products 37(1): 93-99.
Karlsson, J.O. &
Gatenholm, P. 1999. Cellulose fibre-supported pH-sensitive hydrogels. Polymer 40(2): 379-387.
Khor, E. 1997. Methods
for the treatment of collagenous tissues for bioprostheses. Biomaterials 18(2):
95-105.
Klemm, D., Kramer, F.,
Moritz, S., Lindström, T., Ankerfors, M., Gray, D. & Dorris, A. 2011.
Nanocelluloses: A new family of nature-based materials. Angewandte Chemie
International Edition 50(24): 5438-5466.
Kuijpers, A.J., Engbers,
G.H.M., Feijen, J., De Smedt, S.C., Meyvis, T.K.L., Demeester, J., Krijgsveld,
J., Zaat, S.A.J. Dankert, J. 1999. Characterization of the network structure
of carbodiimide cross-linked gelatin gels. Macromolecules 32(10):
3325-3333.
Lee, K.Y. & Mooney,
D.J. 2001. Hydrogels for tissue engineering. Chemical Reviews 101(7):
1869-1880.
Lee, K.Y., Shim, J.
& Lee, H.G. 2004. Mechanical properties of gellan and gelatin composite
films. Carbohydrate Polymers 56(2): 251-254.
Li, H., Yuan, Z., Lam,
K.Y., Lee, H.P., Chen, J., Hanes, J. & Fu, J. 2004. Model development and
numerical simulation of electric-stimulus-responsive hydrogels subject to an
externally applied electric field. Biosensors and Bioelectronics 19(9):
1097-1107.
Li, W., Guo, R., Lan,
Y., Zhang, Y., Xue, W. & Zhang, Y. 2013. Preparation and properties of
cellulose nanocrystals reinforced collagen composite films. Journal of
Biomedical Materials Research Part 102(4): 1131-1139.
Lindblad, M.S., Sjöberg,
J., Albertsson, A.C. & Hartman, J. 2007. Hydrogels from polysaccharides for
biomedical applications. ACS Symposium Series 954: 153-167.
Liu, J., Lin, S., Li, L.
& Liu, E. 2005. Release of theophylline from polymer blend hydrogels. International
Journal of Pharmaceutics 298(1): 117-125.
Liu, T.Y., Hu, S.H.,
Liu, K.H., Liu, D.M. & Chen, S.Y. 2006. Preparation and characterization of
smart magnetic hydrogels and its use for drug release. Journal of Magnetism
and Magnetic Materials 304(1): e397-e399.
Moon, R.J., Martini, A.,
Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials
review: Structure, properties and nanocomposites. Chemical Society Reviews 40(7):
3941-3994.
Moriyama, K.,
Minamihata, K., Wakabayashi, R., Goto, M. & Kamiya, N. 2013. Enzymatic
preparation of streptavidin-immobilized hydrogel using a phenolated linear
poly(ethylene glycol). Biochemical Engineering Journal 76(0): 37-42.
Mu, C., Guo, J., Li, X.,
Lin, W. & Li, D. 2012. Preparation and properties of dialdehyde
carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids 27(1): 22-29.
Murdan, S. 2003.
Electro-responsive drug delivery from hydrogels. Journal of Controlled
Release 92(1-2): 1-17.
Paulino, A.T., Pereira,
A.G.B., Fajardo, A.R., Erickson, K., Kipper, M.J., Muniz, E.C., Belfiore, L.A.
& Tambourgi, E.B. 2012. Natural polymer-based magnetic hydrogels: Potential
vectors for remote-controlled drug release. Carbohydrate Polymers 90(3):
1216-1225.
Peng, B.L., Dhar, N.,
Liu, H.L. & Tam, K.C. 2011. Chemistry and applications of nanocrystalline
cellulose and its derivatives: A nanotechnology perspective. The Canadian
Journal of Chemical Engineering 89(5): 1191-1206.
Pezron, I., Djabourov,
M. & Leblond, J. 1991. Conformation of gelatin chains in aqueous solutions:
1. A light and small-angle neutron scattering study. Polymer 32(17):
3201-3210.
Prestwich, G.D.,
Marecak, D.M., Marecek, J.F., Vercruysse, K.P. & Ziebell, M.R. 1998.
Controlled chemical modification of hyaluronic acid: Synthesis, applications,
and biodegradation of hydrazide derivatives. J. Control Release 53(1-3):
93-103.
Qiu, Y. & Park, K.
2012. Environment-sensitive hydrogels for drug delivery. Advanced Drug
Delivery Reviews 53(3): 321-329.
Rodr?́guez, R.A.,
Alvarez-Lorenzo, C. & Concheiro, A. 2003. Cationic cellulose hydrogels:
Kinetics of the cross-linking process and characterization as pH-/ion-sensitive
drug delivery systems. Journal of Controlled Release 86(2-3): 253-265.
Ross-Murphy, S.B. 1992.
Structure and rheology of gelatin gels: Recent progress. Polymer 33(12):
2622-2627.
Saha, P., Manna, S.,
Chowdhury, S.R., Sen, R., Roy, D. & Adhikari, B. 2010. Enhancement of
tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource
Technology 101(9): 3182-3187.
Shang, J., Shao, Z.
& Chen, X. 2008. Chitosan-based electroactive hydrogel. Polymer 49(25):
5520-5525.
Spizzirri, U.G., Iemma,
F., Puoci, F., Cirillo, G., Curcio, M., Parisi, O.I. & Picci, N. 2009.
Synthesis of antioxidant polymers by grafting of gallic acid and catechin on
gelatin. Biomacromolecules 10(7): 1923-1930.
Wan, Y., Wang, Y.,
Cheng, G. & Yao, K. 2000. Preparation and characterization of gelatin gel
with a gradient structure. Polymer International 49(12): 1600-1603.
Ward, A.G. & Courts,
A. 1977. The Science and Technology of Gelatin. New York: Academic
Press.
Wu, D.Q., Qiu, F., Wang,
T., Jiang, X.J., Zhang, X.Z. & Zhuo, R.X. 2008. Toward the development of
partially biodegradable and injectable thermoresponsive hydrogels for potential
biomedical applications. ACS Applied Materials & Interfaces 1(2):
319-327.
Zhang, H., Patel, A.,
Gaharwar, A.K., Mihaila, S.M., Iviglia, G., Mukundan, S., Bae, H., Yang, H.
& Khademhosseini, A. 2013. Hyperbranched polyester hydrogels with
controlled drug release and cell adhesion properties. Biomacromolecules 14(5):
1299-1310.
Zhang, J.T., Bhat, R.
& Jandt, K.D. 2009. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels
with enhanced responsive properties. Acta Biomaterialia 5(1): 488-497.
Zhang, X., Huang, J.,
Chang, P.R., Li, J., Chen, Y., Wang, D., Yu, J. & Chen, J. 2010. Structure
and properties of polysaccharide nanocrystal-doped supramolecular hydrogels
based on Cyclodextrin inclusion. Polymer 51(19): 4398-4407.
Zhu, D., Jin, L., Wang,
Y. & Ren, H. 2012. Swelling behavior of gelatin-based hydrogel cross-linked
with microbial transglutaminase. Journal of Aqeic 63: 11-20.
*Corresponding author; email: gading@ukm.edu.my
|