Sains Malaysiana 44(6)(2015): 801–810

 

Effects of Silane Surface Treatment of Cellulose Nanocrystals on the Tensile Properties of Cellulose-Polyvinyl Chloride Nanocomposite

(Kesan Rawatan Permukaan Nanohablur Selulosa dengan Silana ke atas Sifat Regangan Nanokomposit Selulosa-Polivinilklorida)

 

 

RASHA M. SHELTAMI1,2, HANIEH KARGARZADEH1 & IBRAHIM ABDULLAH1*

 

1Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Chemistry Department, Faculty of Science, University of Benghazi, Benghazi, Libya

 

Received: 15 January 2014/Accepted: 15 November 2014

 

ABSTRACT

Cellulose nanocrystals (CNC) from mengkuang leaves (Pandanus tectorius) were investigated as potential reinforcement in poly(vinyl chloride) (PVC) matrix. The surface of CNC was modified with silane coupling agent to improve filler-matrix adhesion. Solution casting method was used to prepare PVC nanocomposites with various amounts of modified (SCNC) and unmodified (CNC) nanocrystals. Both SCNC and CNC were examined by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) which showed that surface chemical modification has occurred. An increase in tensile strength was observed with the addition of SCNC compared to the CNC. However, the elongation at break of the nanocomposites was found to decrease with the increase of both fillers loading. An increasing trend was observed in the tensile modulus with the addition of CNC to the PVC matrix, but decreasing with the addition of SCNC. The morphology of a fractured surface of nanocomposites showed silane modification reduced the number of voids in the structure of PVC. The observation indicated the adhesion between the fiber and the matrix had improved upon surface modification of the nanocrystals with silane.

 

Keywords: Cellulose nanocrystals; nanocomposite; poly(vinyl chloride); silane modification

 

 

ABSTRAK

Potensi nanohablur selulosa (CNC) daripada daun mengkuang (Pandanus tectorius) sebagai pengisi penguat bagi matriks polivinil klorida (PVC) telah dikaji. Permukaan CNC telah di rawat dengan agen pengkupel silana bagi meningkatkan lekatan pengisi-matriks. Nanokomposit PVC dengan pelbagai amaun selulosa terawat (SCNC) dan CNC telah disediakan secara larutan tuangan. Penelitian ke atas CNC dan SCNC yang dilakukan secara spektroskopi transformasi Fourier inframerah dan pembiasan X-ray (XRD) menunjukkan modifikasi kimia berlaku ke atas permukaan selulosa. Kekuatan regangan ketara meningkat dengan pertambahan SCNC berbanding CNC tetapi pemanjangan takat putus komposit menurun dengan pertambahan kedua-dua pengisi. Walau bagaimanapun berlaku tren peningkatan bagi modulus regangan dengan pertambahan CNC tetapi menurun dengan SCNC. Morfologi permukaan patah komposit menunjukkan rawatan silana mengurangkan bilangan rongga terjadi dalam matriks. Pemerhatian ini menunjukkan penambahbaikan dalam lekatan pengisi-matriks selepas rawatan permukaan dengan silana.

 

Kata kunci: Nanohablur selulosa; nanokomposit; polivinil klorida; rawatan silana

REFERENCES

Abu Bakar, A. & Baharulrazi, N. 2008. Mechanical properties of benzoylated oil palm empty fruit bunch short fiber reinforced poly(vinyl chloride) composites. Polymer-Plastics Technology and Engineering 47(10): 1072-1079.

Azizi Samir, M.A.S., Alloin, F. & Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.

Battista, O.A. & Smith, P.A. 1962. Microcrystalline cellulose. Industrial & Engineering Chemistry 54(9): 20-29.

Beck-Candanedo, S., Roman, M. & Gray, D.G. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2): 1048-1054.

Belgacem, M.N. & Gandini, A. 2008. Surface modification of cellulose fibres. In. Monomers, Polymers and Composites from Renewable Resources, edited by Belgacem, M.N. & Gandini, A. Amsterdam: Elsevier. pp. 385-400.

Ben Mabrouk, A., Kaddami, H., Magnin, A., Belgacem, M.N., Dufresne, A. & Boufi, S. 2011. Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polymer Engineering & Science 51(1): 62-70.

Bledzki, A.K. & Gassan, J. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24(2): 221-274.

Bondeson, D., Mathew, A. & Oksman, K. 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2): 171-180.

Cao, X., Dong, H. & Li, C.M. 2007. New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3): 899-904.

Chand, N. & Jhod, B.D. 2008. Mechanical, electrical, and thermal properties of maleic anhydride modified rice husk filled PVC composites. BioResources 3(4): 1228-1243.

Chenampulli, S., Unnikrishnan, G., Sujith, A., Thomas, S. & Francis, T. 2013. Cellulose nano-particles from Pandanus: Viscometric and crystallographic studies. Cellulose 20(1): 429-438.

Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A. & Kottaisamy, M. 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers 81(3): 720-725.

de Oliveira Taipina, M., Ferrarezi, M.M.F., Yoshida, I.V.P. & do Carmo Gonçalves, M. 2013. Surface modification of cotton nanocrystals with a silane agent. Cellulose 20(1): 217-226.

Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., de Souza, S.F. & Kottaisamy, M. 2011. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology 102(2): 1988-1997.

Dufresne, A. 2012. Nanocellulose: From Nature to High Performance Tailored Materials. Berlin, Germany: Walter de Gruyter GmbH.

Ebeling, T., Paillet, M., Borsali, R., Diat, O., Dufresne, A., Cavaillé, J.Y. & Chanzy, H. 1999. Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15(19): 6123-6126.

Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A. & Peijs, T. 2010. Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 45(1): 1-33.

Esckilsen, B. 2008. Global PVC markets: Threats and opportunities. Plastics, Additives and Compounding 10(6): 28-30.

Favier, V., Canova, G.R., Cavaille, J.Y., Chanzy, H., Dufresne, A. & Gauthier, C. 1995a. Nanocomposite materials from latex and cellulose whiskers. Polymers for Advanced Technologies 6: 351-355.

Favier, V., Chanzy, H. & Cavaille, J. Y. 1995b. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28: 6365-6367.

Garcia de Rodriguez, N.L., Thielemans, W. & Dufresne, A. 2006. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3): 261-270.

Giesen, W., Wulffraat, S., Zieren, M. & Scholten, L. 2007. Mangrove Guidebook for Southeast Asia. The Netherlands: FAO and Wetlands International.

Goussé, C., Chanzy, H., Excoffier, G., Soubeyrand, L. & Fleury, E. 2002. Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9): 2645-2651.

Grunert, M. & Winter, W. 2002. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Journal of Polymers and the Environment 10(1-2): 27-30.

Grunert, M. & Winter, W. 2000. Progress in the development of cellulose reinforced nanocomposites. Polymeric Materials: Science and Engineering 82: 232-232.

Habibi, Y. 2014. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews 43(5): 1519-1542.

Habibi, Y., Lucia, L.A. & Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews 110(6): 3479-3500.

Habibi, Y., Goffin, A.L., Schiltz, N., Duquesne, E., Dubois, P. & Dufresne, A. 2008. Bionanocomposites based on poly(ε- caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry 18(41): 5002-5010.

Hassan, M.M. & Khan, M.A. 2008. Role of N-(β-amino ethyl) γ-aminopropyl trimethoxy silane as coupling agent on the jute-polycarbonate composites. Polymer-Plastics Technology and Engineering 47(8): 847-850.

Helbert, W., Cavaillé, J.Y. & Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer Composites 17(4): 604-611.

Hon, D.N.S. & Shiraishi, N. 2001. Wood and Cellulosic Chemistry. 2nd ed. New York: Marcel Dekker, Inc.

Jannah, M. 2008. Studies on the properties of woven natural fibers reinforced unsaturated polyster composites. M.Sc. Thesis, Universiti Sains Malaysia (unpublished).

Jiang, H. & Kamdem, D. P. 2004. Development of poly(vinyl chloride)/wood composites. A literature review. Journal of Vinyl and Additive Technology 10(2): 59-69.

Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99.

Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. & Sheltami, R. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.

Katz, H.S. & Mileski, J. 1987. Handbook of Fillers for Plastics. New York: Springer.

Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. 2012. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers 90(2): 735-764.

Li, R., Fei, J., Cai, Y., Li, Y., Feng, J. & Yao, J. 2009. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers 76(1): 94-99.

Lu, P. & Hsieh, Y.L. 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers 87(1): 564-573.

Mallick, P.K. 2008. Fiber-reinforced Composites: Materials, Manufacturing, and Design. Boca Raton: CRC press.

Mariatti, M., Jannah, M., Bakar, A.A. & Khalil, H.A. 2008. Properties of banana and pandanus woven fabric reinforced unsaturated polyester composites. Journal of Composite Materials 42(9): 931-941.

Matuana, L.M., Balatinecz, J.J. & Park, C.B. 1998a. Effect of surface properties on the adhesion between PVC and wood veneer laminates. Polymer Engineering & Science 38(5): 765-773.

Matuana, L.M., Woodhams, R.T., Balatinecz, J.J. & Park, C.B. 1998b. Influence of interfacial interactions on the properties of PVC/cellulosic fiber composites. Polymer Composites 19(4): 446-455.

Moran, J.I., Alvarez, V.A., Cyras, V.P. & Vazquez, A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1): 149-159.

Pacheco, D.M., Johnson, J.R. & Koros, W.J. 2011. Aminosilane-functionalized cellulosic polymer for increased carbon dioxide sorption. Industrial & Engineering Chemistry Research 51(1): 503-514.

Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.R. 2009. Introduction to Spectroscopy. 4th ed. The USA: Cengage Learning.

Raju, G., Ratnam, C.T., Ibrahim, N.A., Rahman, M.Z.A. & Yunus, W.M.Z.W. 2008. Enhancement of PVC/ENR blend properties by poly(methyl acrylate) grafted oil palm empty fruit bunch fiber. Journal of Applied Polymer Science 110(1): 368-375.

Ratnam, C.T., Radin, S.F. & Shamsuddin, S. 2010. Mechanical properties of rubber-wood fiber filled PVC/ENR blend. Malaysian Polymer Journal 5(1): 17-25.

Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J. & Imam, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers 81(1): 83-92.

Segal, L., Creely, J.J., Martin, A.E. & Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29(10): 786-794.

Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88(2): 772-779.

Shu, H., Liu, K., Liu, F., Zhang, Z. & Li, X. 2013. Improving mechanical properties of poly(vinyl chloride) by doping with organically functionalized reactive nanosilica. Journal of Applied Polymer Science 129(5): 2931-2939.

South, C.R. 2008. Polymer side-chains as arms for molecular recognition. The Academic Faculty, Georgia Institute of Technology, Atlanta.

Wambua, P., Ivens, J. & Verpoest, I. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics? Composites Science and Technology 63(9): 1259-1264.

Weon, J.I. & Sue, H.J. 2005. Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46(17): 6325-6334.

Wirawan, R., Zainudin, E.S. & Sapuan, S.M. 2009. Mechanical properties of natural fibre reinforced PVC composites: A review. Sains Malaysiana 38(4): 531-535.

Xie, Y., Hill, C.A., Xiao, Z., Militz, H. & Mai, C. 2010. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 41 (7): 806-819.

 

 

*Corresponding author; email: dia@ukm.edu.my

 

 

 

previous