Sains Malaysiana 44(6)(2015):
801–810
Effects of Silane Surface Treatment of
Cellulose Nanocrystals on the Tensile Properties of Cellulose-Polyvinyl
Chloride Nanocomposite
(Kesan Rawatan Permukaan Nanohablur Selulosa
dengan Silana ke atas Sifat Regangan Nanokomposit Selulosa-Polivinilklorida)
RASHA M. SHELTAMI1,2, HANIEH KARGARZADEH1 & IBRAHIM ABDULLAH1*
1Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
2Chemistry Department,
Faculty of Science, University of Benghazi, Benghazi, Libya
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
Cellulose nanocrystals (CNC)
from mengkuang leaves (Pandanus tectorius) were investigated as potential
reinforcement in poly(vinyl chloride) (PVC)
matrix. The surface of CNC was modified with silane coupling
agent to improve filler-matrix adhesion. Solution casting method
was used to prepare PVC nanocomposites with various amounts of modified (SCNC)
and unmodified (CNC) nanocrystals. Both SCNC
and CNC were examined by Fourier transform
infrared (FTIR) spectroscopy and X-ray diffraction (XRD)
which showed that surface chemical modification has occurred. An
increase in tensile strength was observed with the addition of SCNC compared
to the CNC. However, the elongation at break of the nanocomposites
was found to decrease with the increase of both fillers loading.
An increasing trend was observed in the tensile modulus with the
addition of CNC
to the PVC matrix, but decreasing with the addition of SCNC.
The morphology of a fractured surface of nanocomposites showed silane
modification reduced the number of voids in the structure of PVC.
The observation indicated the adhesion between the fiber and the
matrix had improved upon surface modification of the nanocrystals
with silane.
Keywords: Cellulose nanocrystals;
nanocomposite; poly(vinyl chloride); silane modification
ABSTRAK
Potensi nanohablur selulosa (CNC)
daripada daun mengkuang (Pandanus tectorius) sebagai pengisi penguat
bagi matriks polivinil klorida (PVC) telah dikaji. Permukaan CNC telah
di rawat dengan agen pengkupel silana bagi meningkatkan lekatan
pengisi-matriks. Nanokomposit PVC dengan pelbagai amaun
selulosa terawat (SCNC) dan CNC telah
disediakan secara larutan tuangan. Penelitian ke atas CNC dan SCNC yang dilakukan secara spektroskopi transformasi Fourier
inframerah dan pembiasan X-ray (XRD) menunjukkan modifikasi
kimia berlaku ke atas permukaan selulosa. Kekuatan regangan ketara meningkat
dengan pertambahan SCNC berbanding CNC tetapi
pemanjangan takat putus komposit menurun dengan pertambahan kedua-dua pengisi.
Walau bagaimanapun berlaku tren peningkatan bagi modulus regangan dengan
pertambahan CNC tetapi menurun dengan SCNC.
Morfologi permukaan patah komposit menunjukkan rawatan silana mengurangkan
bilangan rongga terjadi dalam matriks. Pemerhatian ini menunjukkan
penambahbaikan dalam lekatan pengisi-matriks selepas rawatan permukaan dengan
silana.
Kata
kunci: Nanohablur selulosa; nanokomposit; polivinil klorida; rawatan silana
REFERENCES
Abu Bakar, A. &
Baharulrazi, N. 2008. Mechanical properties of benzoylated oil palm empty fruit
bunch short fiber reinforced poly(vinyl chloride) composites. Polymer-Plastics
Technology and Engineering 47(10): 1072-1079.
Azizi Samir, M.A.S.,
Alloin, F. & Dufresne, A. 2005. Review of recent research into cellulosic
whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2): 612-626.
Battista, O.A. &
Smith, P.A. 1962. Microcrystalline cellulose. Industrial & Engineering
Chemistry 54(9): 20-29.
Beck-Candanedo, S.,
Roman, M. & Gray, D.G. 2005. Effect of reaction conditions on the
properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2): 1048-1054.
Belgacem, M.N. &
Gandini, A. 2008. Surface modification of cellulose fibres. In. Monomers,
Polymers and Composites from Renewable Resources, edited by Belgacem, M.N.
& Gandini, A. Amsterdam: Elsevier. pp. 385-400.
Ben Mabrouk, A.,
Kaddami, H., Magnin, A., Belgacem, M.N., Dufresne, A. & Boufi, S. 2011.
Preparation of nanocomposite dispersions based on cellulose whiskers and
acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polymer Engineering & Science 51(1): 62-70.
Bledzki, A.K. & Gassan,
J. 1999. Composites reinforced with cellulose based fibres. Progress in
Polymer Science 24(2): 221-274.
Bondeson, D., Mathew, A.
& Oksman, K. 2006. Optimization of the isolation of nanocrystals from
microcrystalline cellulose by acid hydrolysis. Cellulose 13(2): 171-180.
Cao, X., Dong,
H. & Li, C.M. 2007. New nanocomposite materials reinforced with flax
cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):
899-904.
Chand, N. & Jhod, B.D. 2008. Mechanical, electrical, and
thermal properties of maleic anhydride modified rice husk filled PVC
composites. BioResources 3(4): 1228-1243.
Chenampulli, S.,
Unnikrishnan, G., Sujith, A., Thomas, S. & Francis, T. 2013. Cellulose
nano-particles from Pandanus: Viscometric and crystallographic studies. Cellulose 20(1): 429-438.
Cherian, B.M., Leão,
A.L., de Souza, S.F., Thomas, S., Pothan, L.A. & Kottaisamy, M. 2010.
Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate
Polymers 81(3): 720-725.
de Oliveira Taipina, M.,
Ferrarezi, M.M.F., Yoshida, I.V.P. & do Carmo Gonçalves, M. 2013. Surface
modification of cotton nanocrystals with a silane agent. Cellulose 20(1):
217-226.
Deepa, B., Abraham, E.,
Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Leao, A.L., de Souza,
S.F. & Kottaisamy, M. 2011. Structure, morphology and thermal
characteristics of banana nano fibers obtained by steam explosion. Bioresource
Technology 102(2): 1988-1997.
Dufresne, A. 2012. Nanocellulose:
From Nature to High Performance Tailored Materials. Berlin, Germany: Walter
de Gruyter GmbH.
Ebeling, T., Paillet,
M., Borsali, R., Diat, O., Dufresne, A., Cavaillé, J.Y. & Chanzy, H. 1999.
Shear-induced orientation phenomena in suspensions of cellulose microcrystals,
revealed by small angle X-ray scattering. Langmuir 15(19): 6123-6126.
Eichhorn, S.J.,
Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J.,
Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S.,
Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A.,
Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A. & Peijs, T. 2010.
Review: Current international research into cellulose nanofibres and
nanocomposites. Journal of Materials Science 45(1): 1-33.
Esckilsen, B. 2008.
Global PVC markets: Threats and opportunities. Plastics, Additives and
Compounding 10(6): 28-30.
Favier, V., Canova,
G.R., Cavaille, J.Y., Chanzy, H., Dufresne, A. & Gauthier, C. 1995a.
Nanocomposite materials from latex and cellulose whiskers. Polymers for
Advanced Technologies 6: 351-355.
Favier, V., Chanzy, H.
& Cavaille, J. Y. 1995b. Polymer nanocomposites reinforced by cellulose
whiskers. Macromolecules 28: 6365-6367.
Garcia de Rodriguez,
N.L., Thielemans, W. & Dufresne, A. 2006. Sisal cellulose whiskers
reinforced polyvinyl acetate nanocomposites. Cellulose 13(3): 261-270.
Giesen, W., Wulffraat,
S., Zieren, M. & Scholten, L. 2007. Mangrove Guidebook for Southeast
Asia. The Netherlands: FAO and Wetlands International.
Goussé, C., Chanzy, H., Excoffier,
G., Soubeyrand, L. & Fleury, E. 2002. Stable suspensions of partially
silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):
2645-2651.
Grunert, M. &
Winter, W. 2002. Nanocomposites of cellulose acetate butyrate reinforced with
cellulose nanocrystals. Journal of Polymers and the Environment 10(1-2):
27-30.
Grunert, M. &
Winter, W. 2000. Progress in the development of cellulose reinforced
nanocomposites. Polymeric Materials: Science and Engineering 82:
232-232.
Habibi, Y. 2014. Key
advances in the chemical modification of nanocelluloses. Chemical Society
Reviews 43(5): 1519-1542.
Habibi, Y., Lucia, L.A.
& Rojas, O.J. 2010. Cellulose nanocrystals: Chemistry, self-assembly, and
applications. Chemical Reviews 110(6): 3479-3500.
Habibi, Y., Goffin,
A.L., Schiltz, N., Duquesne, E., Dubois, P. & Dufresne, A. 2008.
Bionanocomposites based on poly(ε- caprolactone)-grafted cellulose
nanocrystals by ring-opening polymerization. Journal of Materials Chemistry 18(41):
5002-5010.
Hassan, M.M. & Khan,
M.A. 2008. Role of N-(β-amino ethyl) γ-aminopropyl trimethoxy silane
as coupling agent on the jute-polycarbonate composites. Polymer-Plastics
Technology and Engineering 47(8): 847-850.
Helbert, W., Cavaillé,
J.Y. & Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat
straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer
Composites 17(4): 604-611.
Hon, D.N.S. &
Shiraishi, N. 2001. Wood and Cellulosic Chemistry. 2nd ed. New York:
Marcel Dekker, Inc.
Jannah, M. 2008. Studies
on the properties of woven natural fibers reinforced unsaturated polyster
composites. M.Sc. Thesis, Universiti Sains Malaysia (unpublished).
Jiang, H. & Kamdem,
D. P. 2004. Development of poly(vinyl chloride)/wood composites. A literature
review. Journal of Vinyl and Additive Technology 10(2): 59-69.
Johar, N., Ahmad, I.
& Dufresne, A. 2012. Extraction, preparation and characterization of
cellulose fibres and nanocrystals from rice husk. Industrial Crops and
Products 37(1): 93-99.
Kargarzadeh, H., Ahmad,
I., Abdullah, I., Dufresne, A., Zainudin, S. & Sheltami, R. 2012. Effects
of hydrolysis conditions on the morphology, crystallinity, and thermal
stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3): 855-866.
Katz, H.S. &
Mileski, J. 1987. Handbook of Fillers for Plastics. New York: Springer.
Lavoine, N., Desloges,
I., Dufresne, A. & Bras, J. 2012. Microfibrillated cellulose - Its barrier
properties and applications in cellulosic materials: A review. Carbohydrate
Polymers 90(2): 735-764.
Li, R., Fei, J., Cai,
Y., Li, Y., Feng, J. & Yao, J. 2009. Cellulose whiskers extracted from
mulberry: A novel biomass production. Carbohydrate Polymers 76(1):
94-99.
Lu, P. & Hsieh, Y.L.
2012. Preparation and characterization of cellulose nanocrystals from rice
straw. Carbohydrate Polymers 87(1): 564-573.
Mallick, P.K. 2008. Fiber-reinforced
Composites: Materials, Manufacturing, and Design. Boca Raton: CRC press.
Mariatti, M., Jannah,
M., Bakar, A.A. & Khalil, H.A. 2008. Properties of banana and pandanus
woven fabric reinforced unsaturated polyester composites. Journal of
Composite Materials 42(9): 931-941.
Matuana, L.M.,
Balatinecz, J.J. & Park, C.B. 1998a. Effect of surface properties on the
adhesion between PVC and wood veneer laminates. Polymer Engineering &
Science 38(5): 765-773.
Matuana, L.M., Woodhams,
R.T., Balatinecz, J.J. & Park, C.B. 1998b. Influence of interfacial
interactions on the properties of PVC/cellulosic fiber composites. Polymer
Composites 19(4): 446-455.
Moran, J.I., Alvarez,
V.A., Cyras, V.P. & Vazquez, A. 2008. Extraction of cellulose and
preparation of nanocellulose from sisal fibers. Cellulose 15(1):
149-159.
Pacheco, D.M., Johnson,
J.R. & Koros, W.J. 2011. Aminosilane-functionalized cellulosic polymer for
increased carbon dioxide sorption. Industrial & Engineering Chemistry
Research 51(1): 503-514.
Pavia, D.L., Lampman,
G.M., Kriz, G.S. & Vyvyan, J.R. 2009. Introduction to Spectroscopy.
4th ed. The USA: Cengage Learning.
Raju, G., Ratnam, C.T.,
Ibrahim, N.A., Rahman, M.Z.A. & Yunus, W.M.Z.W. 2008. Enhancement of
PVC/ENR blend properties by poly(methyl acrylate) grafted oil palm empty fruit
bunch fiber. Journal of Applied Polymer Science 110(1): 368-375.
Ratnam, C.T., Radin,
S.F. & Shamsuddin, S. 2010. Mechanical properties of rubber-wood fiber
filled PVC/ENR blend. Malaysian Polymer Journal 5(1): 17-25.
Rosa, M.F., Medeiros,
E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G.,
Orts, W.J. & Imam, S.H. 2010. Cellulose nanowhiskers from coconut husk
fibers: Effect of preparation conditions on their thermal and morphological
behavior. Carbohydrate Polymers 81(1): 83-92.
Segal, L., Creely, J.J.,
Martin, A.E. & Conrad, C.M. 1959. An empirical method for estimating the
degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile
Research Journal 29(10): 786-794.
Sheltami, R.M.,
Abdullah, I., Ahmad, I., Dufresne, A. & Kargarzadeh, H. 2012. Extraction of
cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate
Polymers 88(2): 772-779.
Shu, H., Liu, K., Liu,
F., Zhang, Z. & Li, X. 2013. Improving mechanical properties of poly(vinyl
chloride) by doping with organically functionalized reactive nanosilica. Journal
of Applied Polymer Science 129(5): 2931-2939.
South, C.R. 2008.
Polymer side-chains as arms for molecular recognition. The Academic Faculty,
Georgia Institute of Technology, Atlanta.
Wambua, P., Ivens, J.
& Verpoest, I. 2003. Natural fibres: Can they replace glass in fibre
reinforced plastics? Composites Science and Technology 63(9): 1259-1264.
Weon, J.I. & Sue,
H.J. 2005. Effects of clay orientation and aspect ratio on mechanical behavior
of nylon-6 nanocomposite. Polymer 46(17): 6325-6334.
Wirawan, R., Zainudin,
E.S. & Sapuan, S.M. 2009. Mechanical properties of natural fibre reinforced
PVC composites: A review. Sains Malaysiana 38(4): 531-535.
Xie, Y., Hill, C.A.,
Xiao, Z., Militz, H. & Mai, C. 2010. Silane coupling agents used for
natural fiber/polymer composites: A review. Composites Part A: Applied
Science and Manufacturing 41 (7): 806-819.
*Corresponding author; email: dia@ukm.edu.my
|