Sains Malaysiana 44(6)(2015):
811–818
Self-healing of Poly(2-hydroxyethyl
methacrylate) Hydrogel through Molecular Diffusion
(Swa-Pemulihan Hidrogel Poli(2-hidroksietil
metakrilat) melalui Penyusupan Rawak Molekul)
N.A. SIRAJUDDIN & M.S. MD JAMIL*
Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
Synthetic materials that are capable
of healing upon damage are being developed at a rapid pace because of their
many potential applications. Here, new healing chemically cross-linked hydrogel
of poly(2-hydroxyethyl methacrylate) (pHEMA)
was prepared. The healing hydrogel was achieved by heating above its glass
transition (Tg). The intermolecular
diffusion of dangling chain and the chain slippage led to healing of the gel.
The peaks in attenuated total reflectance (ATR)
confirmed that hydrogel was formed while rheological studies had determined the
minimum for healing temperature is 48.5oC.
The results showed that ratio stress of the healable hydrogel can reach until
92 and 91% of first and second healing cycle, respectively. The morphology of
the sample was carried out to evaluate the self-property of hydrogel.
Keywords: Chain slippage;
intermolecular diffusion; self-healing hydrogel; temperature
ABSTRAK
Keupayaan swa-pemulihan
pada bahan sintetik banyak digunakan dalam aplikasi perubatan
serta aplikasi-aplikasi yang berkaitan. Suatu hidrogel
baharu iaitu poli(hidrosietil metakrilat)
telah disediakan melalui tindak balas kimia. Swa-pemulihan hidrogel
berlaku apabila diberikan haba melebihi suhu peralihan kaca (Tg)
dan gel yang telah dipotong bercantum semula melalui proses penyusupan
rawak molekul dan penggelinciran rantai. Puncak spektrum yang
ditunjukkan dalam ATR
mengesahkan proses taut silang yang berlaku dalam
hidrogel tersebut. Suhu pemulihan minimum
pula telah ditentukan oleh kajian reologi. Hasil ujian
tensil membuktikan kekuatan hidrogel pemulihan berupaya mencapai
sehingga 92% pada kitaran pertama dan 91% pada kitaran kedua.
Ujian morfologi telah dijalankan bagi mengenal
pasti sifat pemulihan hidrogel tersebut.
Kata
kunci: Penggelinciran rantai; penyusupan molekul; suhu; swa-pemulihan
hydrogel
REFERENCES
ASTM D5045-99. 2007. Standard
Test Methods for Plane-strain Fracture Toughness and Strain Energy Release Rate
of Plastic Materials. American Society for Testing and
Materials.
Begley, T.H., Brandsch,
J., Limm, W., Siebert, H. & Piringer, O. 2008. Diffusion
behaviour of additives in polypropylene in correlation with polymer properties. Food Additives & Contaminants Part A, Chemistry, Analysis, Control,
Exposure & Risk Assessment 25(11): 1409-1415.
Belma, ISIK. 2000.
Swelling behaviour of acrylamide-2- hydroxyethyl methacrylate hydrogels. Turkish
Journal of Chemistry 24: 147-156.
Bergman,
S.D. & Wudl, F. 2008. Mendable polymers. Journal of Materials
Chemistry 18: 41-62.
Bhalekar, M., Sonawane,
S. & Shimpi, S. 2013. Synthesis and characterization of a
cysteine xyloglucan as mucoadhesive polymer. Brazilian Journal of
Pharmaceutical Science 49(2): 285-292.
Blaiszik,
B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R. & White,
S.R. 2010. Self-healing polymer and composite - Autonomous materials
systems. Annual Review of Materials Research 40: 179-211.
Billiet,
S., Hillewaere, X.K., Teixeira, R.F. & Du Prez, F.E. 2013. Chemistry of
crosslinking processes for self-healing polymers. Macromolecular Rapid
Communications 34(4): 290-309.
Chen, Y., Kushner, A.M.,
Williams, G.A. & Guan, Z. 2012. Multiphase design of
autonomic self-healing thermoplastic elastomers. Nature Chemistry 4:
467-472.
Deng, G., Li, F., Yu,
H., Liu, F., Liu, C., Sun, W., Jiang, H. & Chen, Y. 2012. Dynamic hydrogels with an environmental adaptive self-healing
ability and dual responsive sol-gel transitions. ACS Macro Letters 1:
275-279.
Dohler,
D., Michael, P. & Binder, W. 2013. Principles of
self-healing polymers. In Self-Healing Polymers: From Principles to
Applications, edited by Binder, W.H. New York: Wiley- VCHVerlag GmbH &
Co. KGaA. pp. 5-60.
Ferry, J.D. 1980. The
colloidal structure of bitumen: Consequences on the rheology and on the
mechanisms of bitumen modification. In Viscoelastic
Properties of Polymers. 3rd ed. New
York: Wiley & Sons.
Lee,
J., Bhattacharyya, D., Zhang, M.Q. & Yuan, Y.C. 2011. Fracture behaviour of a
self-healing microcapsule-loaded epoxy system. Express Polymer Letters 5(3):
246-253.
Lesueur, D. 2009. The
colloidal structure of bitumen: Consequences on the rheology and on the
mechanisms of bitumen modification. Advances in Colloid and Interface
Science 145: 42-82.
Maes,
F., Montarnal, D., Cantournet, S., Tournilhac, F., Corte, L. & Leibler, L.
2012. Activation and deactivation of self-healing in supramolecular
rubbers. Soft Material 8: 1681- 1687.
Moura, M.J., Figueiredo,
M.M. & Gil, M.H. 2007. Rheological study of genipin cross-linked chitosan
hydrogels. Biomacromolecules 8: 3823-3829.
Murphy,
E.B. & Wudl, F. 2010. The world of smart healable
materials. Progress in Polymer Science 35: 223-251.
Pavlos, S., Stephanoul,
Chunggi, B., Georgia, T., Vlasis, G.M. & Martin, K. 2010. Quantifying chain
reptation in entangled polymer melts: Topological and dynamical mapping of
atomistic simulation results onto the tube model. Journal of Chemical
Physics 132(12): 1-16.
Phadke, A., Zhang, C.,
Arman, B., Hsu, C.C., Mashelkar, R.A., Lele, A.K., Tauber, M.J., Arya, G. &
Varghese, S. 2012. Rapid self-healing hydrogels. Proceeding
of the National Academy Science of U.S.A. 109: 4383-4388.
Radi,
B., Wellard, R.M. & George, G.A. 2013. Effect of dangling chains on the
structure and physical properties of a tightly crosslinked poly(ethylene
glycol) network. Soft Material 9: 3262-3271.
Tang, Y.F., Du, Y.M.,
Hu, X.W., Shi, X.W. & Kennedy, J.F. 2007. Rheological characterization of a novel
thermo-sensitive chitosan/poly(vinyl alcohol) blend
hydrogel. Carbohydrate Polymers 67: 491-499.
Wool, R.P. 2008. Self-healing materials: A review. Soft Material 4(3): 400-418.
Wool,
R.P. 1994. Polymer Interfaces: Structure and Strength. Cincinnati, New York: Hanser
Gardner. pp. 445-479.
Wool,
R.P. 1993. Polymer Entanglements. Macromolecules 26: 1564-1569.
Wool,
R. & O’Connor, K. 1983. Theory of crack healing in
polymers. Journal of Applied Physics 52(10): 5953-5963.
Yamaguchi,
M., Ono, S. & Okamoto, K. 2009. Interdiffusion of dangling
chains in weak gel and its application to self-repairing material. Materials
Science Engineering B 162(3): 189-194.
Yajuan, Y., Qingzhi, L.,
Lianying, W. & Yangdong, H. 2012. Molecular dynamics
simulation for diffusion of organic molecules in polyethylene membranes. Journal CIESC 63(1): 113-113.
Zhang,
L., Zheng, G.J., Guo, Y.T., Zhou, L., Du, J. & He, H. 2014. Preparation of novel
biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pacific Journal of
Tropical Medicine 136-140.
Zhao, Y., Gao, S., Zhao,
S., Li, Y., Cheng, L., Li, J. & Yin, Y. 2012. Synthesis
and characterization of disulfide-crosslinked alginate hydrogel scaffolds. Materials Science and Engineering C 32: 2153-2162.
*Corresponding author; email: suzeren@ukm.edu.my