Sains Malaysiana 44(6)(2015):
827–834
Removal of Methylene Blue Dye in Aqueous
Solution by Sorption on a Bacterial-g-Poly-(Acrylic Acid) Polymer Network
Hydrogel
(Penyingkiran Pewarna Metilena Biru di dalam
Larutan Akueus dengan Serapan oleh Polimer
Hidrogel Berasaskan Rangkaian Selulosa
Bakteria-g-Poli-(Asid Akrilik))
ADIL HAKAM1, I. ABDUL RAHMAN2, M. SUZEREN M. JAMIL1, RIZAFIZAH OTHAMAN1,
M.C.I. MOHAMAD AMIN3 & AZWAN MAT LAZIM1*
1Faculty Science and
Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor
Darul Ehsan, Malaysia
2Laboratory of Gamma
Radiation Instrument, Science Nuclear Program, School of Applied Physics
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
3Faculty of Pharmacy,
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300 Kuala Lumpur, Malaysia
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
In this study, Bacterial cellulose (BC)
grafted with Acrylic acid (AA) was prepared using Co60 γ-rays
source (30 KGy). Although many samples were prepared, BC: AA with
ratio of 1:1 labelled as A1 and 2:1 labelled as A2 gave the most significant
results. Hence these particular ratios have been selected and further
investigated. AA was proven grafted onto BC by
using ATR-FTIR due to the absent of C-O stretching (1040 cm-1)
in both hydrogels. The SEM image of both hydrogels samples
showed highly porosity networks structure have been produced. The physical
properties of the hydrogels such as equilibrium water content (%) and swelling
ratio (%) in different pH buffer solution were measured. It was found that the
equilibrium water content (%) of A1 was 93.10% while A2 was 74.83%,
respectively. The results indicated that the equilibrium water content (%) increased
by gaining the AA concentration. At pH10, the A2
swelling ratio (%) was two folded with 3350% in comparison with the A1. For the
removal of methylene blue (MB) from aqueous solution, the results
from the UV-VIS spectroscopy demonstrated that the A2 sample
hydrogel was also an effective absorbent material.
Keywords: Bacterial cellulose; gamma
radiation; hydrogel; methylene blue
ABSTRAK
Dalam kajian ini, hidrogel
berasaskan selulosa bakteria telah dihasilkan dengan mencangkukkan molekul asid
akrilik (AA) pada jaringan selulosa bakteria (SB).
Teknik pempolimerkan yang digunakan di dalam kajian ini adalah pempolimeran
sinaran radiasi gama (sumber Co60, dos: 30 KGy). Walaupun banyak sampel
disediakan, sampel hidrogel dengan nisbah SB: AA,
1:1 dilabel sebagai A1 dan 2:1 sebagai A2 memberikan keputusan yang paling
baik. Oleh itu, kedua-dua sampel tersebut dikaji dengan lebih lanjut. AA telah
terbukti ditambah kepada SB dengan menggunakan ATR-FTIR kerana
regangan CO (1040 cm-1) dalam kedua-dua hidrogel telah
disingkirkan. Imej SEM bagi kedua-dua sampel hidrogel
menunjukkan struktur yang mempunyai keporosan yang tinggi. Selain itu,
sifat-sifat fizikal bagi kedua-dua sampel seperti keputusan ujian kandungan air
dalam keseimbangan (%) dan ujian pembengkakan dalam larutan penimbal dengan pH
yang berbeza dikaji. Keputusan ujian kandungan air dalam keseimbangan (%)
mendapati sampel A1 mencatatkan peratusan sebanyak 93.10% manakala sampel A2
mencatatkan peratusan sebanyak 74.83%. Hal ini membuktikan bahawa kandungan AA yang
tinggi bagi setiap sampel akan meningkatkan peratusan kandungan air dalam
keseimbangan. Dalam ujian pembengkakan dalam larutan penimbal dengan pH yang
berbeza, keputusan menunjukkan kedua-dua sampel mempunyai kandungan serapan
yang tinggi dalam larutan penimbal pH10. Sampel A2 mempunyai peratusan sebanyak
3350% berbanding sampel A1. Setelah kedua-dua sampel menjalani ujian
penyingkiran pewarna metilena biru menggunakan spektroskopi UV-VIS,
keputusan menunjukkan bahawa sampel A2 merupakan sampel hidrogel yang mampu
menyerap pewarna metilena biru daripada larutan akueus dengan baik berbanding
sampel A1.
Kata
kunci: Hidrogel; metilena biru; selulosa bakteria; sinaran gama
REFERENCES
Abdel-Halim,
E.S. 2013. Preparation of starch/poly(N,N-Diethylaminoethyl methacrylate)
hydrogel and its use in dye removal from aqueous solutions. Reactive and
Functional Polymers 73(11): 1531-1536.
Amin,
M.C.I.M., Ahmad, N., Halib, N. & Ahmad, I. 2012. Synyhesis and
characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid
hydrogels for drug delivery. Carbohydrate Polymers 88: 465-473.
An, J.C.
2010. Synthesis of the combined inter- and intra-crosslinked nanohydrogels by
e-beam ionizing radiation. Journal of Industrial and Engineering Chemistry 16(5):
657-661.
Campbell,
S.B. & Hoare, T. 2014. Externally addressable hydrogel nanocomposites for
biomedical applications. Current Opinion in Chemical Engineering 4(0):
1-10.
Cherian, B.,
Leao, A., Souza, S., Thomas, S., Pothan, L. & Kottaisamy, M. 2011. Cellulose
nanocomposites for high-performance applications. In Cellulose Fibers: Bio-
and Nano-Polymer Composites, edited by Kalia, S., Kaith, B.S. & Kaur,
I. Springer Berlin Heidelberg. pp.
539-587.
Defader,
N.C., Akter, T., Haque, M.E., Swapna, S.P., Sadia Islam & Huq, D. 2012.
Effect of acrylic acid on the properties of polyvinylpyrrolidone hydrogel
prepared by the application of gamma radiation. African Journal of
Biotechnology 11(66): 13049-13057.
Ding, F.,
Nie, Z., Deng, H., Xiao, L., Du, Y. & Shi, X. 2013. Antibacterial hydrogel
coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydrate
Polymers 98(2): 1547-1552.
Endo, T.,
Ikeda, R., Yanagida, Y. & Hatsuzawa, T. 2008. Stimuli-responsive
hydrogel-silver nanoparticles composite for development of localized surface
plasmon resonance-based optical biosensor. Analytica Chimica Acta 611(2):
205-211.
Gibas, I.
& Janik, H. 2010. Review: Synthetic polymer hydrogels for biomedical
applications. Chemistry & Chemical Technology 4(4): 298-304.
Hu, X.,
Zhou, J., Zhang, N., Tan, H. & Gao, C. 2008. Preparation and properties of
an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan
hydrogel. Journal of the Mechanical Behavior of Biomedical Materials 1(4):
352-359.
Huang, Z.,
Wu, Q., Liu, S., Liu, T. & Zhang, B. 2013. A novel biodegradable
β-cyclodextrin-based hydrogel for the removal of heavy metal ions. Carbohydrate
Polymers 97(2): 496-501.
Jaiswal, M.,
Lale, S., Ramesh, N.G. & Koul, V. 2013. Synthesis and characterization of
positively charged interpenetrating double-network hydrogel matrices for
biomedical applications. Reactive and Functional Polymers 73(11):
1493-1499.
Jeon, Y.S.,
Lei, J. & Kim, J.H. 2008. Dye adsorption characteristics of
alginate/polyaspartate hydrogels. Journal of Industrial and Engineering
Chemistry 14: 726-731.
Johari,
N.S., Ahmad, I. & Halib, N. 2012. Comparison study of hydrogels properties
synthesized with micro- and nano- size bacterial cellulose particels extracted
from Nata de coco. Chemical and Biochemical Engineering Quarterly 26(4):
399-404.
Kentaro, A.
& Hiroyuki, Y. 2012. Cellulose nanofiber-based hydrogels with high
mechanical strength. Cellulose 19(6): 1907-1912.
Koupai,
J.A., Eslamian, S.S. & Kazemi, J.A. 2008. Enhancing the available water
content in unsaturated soil zone using hydrogel, to improve plant growth
indices. Ecohydrology & Hydrobiology 8(1): 67-75.
La, Y.H., McCloskey, B.D., Sooriyakumaran, R., Vora, A.,
Freeman, B., Nassar, M., Hedrick, J., Nelson, A. & Allen, R. 2011.
Bifunctional hydrogel coatings for water purification membranes: Improved
fouling resistance and antimicrobial activity. Journal of Membrane Science 372(1-2):
285-291.
Lee, K.Y., Quero, F.,
Blaker, J., Hill, C., Eichhorn, S. & Bismarck, A. 2011. Surface only
modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3): 595-605.
Liu, A., Chen, X., Wang,
K., Wei, N., Sun, Z., Lin, X., Chen, Y. & Du, M. 2011. Electrochemical DNA
biosensor based on aldehyde-agarose hydrogel modified glassy carbon electrode
for detection of PML/RARa fusion gene. Sensors and Actuators B: Chemical 160(1):
1458-1463.
Masteiková, R.,
Chalupová, Z. & Šklubalová, Z. 2003. Stimuli-sensitive hydrogels in
controlled and sustained drug delivery. Medicina 39(2): 19-24.
Mirahmadi, F.,
Tafazzoli-Shadpour, M., Shokrgozar, M.A. & Bonakdar, S. 2013. Enhanced
mechanical properties of thermosensitive chitosan hydrogel by silk fibers for
cartilage tissue engineering. Materials Science and Engineering: C 33(8):
4786-4794.
Murthy, P.S.K., Murali
Mohan, Y., Varaprasad, K., Sreedhar, B. & Mohana Raju, K. 2008. First
successful design of semi- IPN hydrogel-silver nanocomposites: A facile
approach for antibacterial application. Journal of Colloid and Interface
Science 318(2): 217-224.
Narjary, B., Aggarwal,
P., Singh, A., Chakraborty, D. & Singh, R. 2012. Water availability in
different soils in relation to hydrogel application. Geoderma 187-188(0):
94-101.
Nasef, M.M. & Güven,
O. 2006. Radiation-grafted copolymers for separation and purification purposes:
Status, challenges and future directions. Progress in Polymer Science 37(12):
1597-1656.
Ng, S.S., Su, K., Li,
C., Chan-Park, M.B., Wang, D.A. & Chan, V. 2012. Biomechanical study of the
edge outgrowth phenomenon of encapsulated chondrocytic isogenous groups in the
surface layer of hydrogel scaffolds for cartilage tissue engineering. Acta
Biomaterialia 8(1): 244-252.
Ningmei, W. &
Zhengkui, L. 2013. Synthesis and characterization of poly(HEA/MALA) hydrogel
and its application in removal of heavy metal ions from water. Chemical
Engineering Journal 215-216(0): 894-902.
Nurettin, S., Ozgur, O.,
Sema, E., Yakup, B., Senol, K. & Nahit, A. 2010. Utilization of magnetic
hydrogels in the separation of toxic metal ions from aqueous environments. Desalination 260(1-3): 57-64.
Oz, M., Lorke, D.E.
& Petroianu, G.A. 2009. Methylene blue and Alzheimer’s disease. Biochemical
Pharmacology 78(8): 927-932.
Ozgur, O., Sema, E.,
Yakup, B., Nahit, A. & Nurettin, S. 2009. Removal of toxic metal ions with
magnetic hydrogels. Water Research 43(17): 4403-4411.
Pourjavadi, A., Doulabi,
M., Soleyman, R., Sharif, S. & Eghtesadi, S.A. 2012. Synthesis and
characterization of a novel (salep phosphate)-based hydrogel as a carrier
matrix for fertilizer release. Reactive and Functional Polymers 72(10):
667-672.
Qiu, Y. & Park, K.
2012. Environment-sensitive hydrogels for drug delivery. Advanced Drug
Delivery Reviews 64, Supplement(0): 49-60.
Rahman, M.A., Amin,
S.M.R. & Alam, A.M.S. 2012. Removal of methylene blue from waste water
using activated carbon prepared from rice husk. Journal Science of
University Dhaka 60(2): 185-189.
Sáfrány, Á., Beiler, B.
& Vincze, Á. 2010. Radiation polymerization and crosslinking: A viable
alternative for synthesis of porous functional polymers. Radiation Physics
and Chemistry 79(4): 462-466.
Saha, N., Saarai, A.,
Roy, N., Kitano, T. & Saha, P. 2011. Polymeric biomaterial based hydrogels
for biomedical applications. Journal of Biomaterials and Nanobiotechnology 2:
85-90.
Sahera, M., Ghada, M.
& Manal, T. 2012. Synthesis and characterization of poly(acrylic
acid)-<i>g -sodium alginate hydrogel initiated by gamma
irradiation for controlled release of chlortetracycline HCl. Monatshefte für
Chemie / Chemical Monthly 1-9.
Sahiner, N., Ozay, O.,
Aktas, N., Blake, D.A. & John, V.T. 2011. Arsenic (V) removal with
modifiable bulk and nano p(4- vinylpyridine)-based hydrogels: The effect of
hydrogel sizes and quarternization agents. Desalination 279(1-3):
344-352.
Sajab, M.S., Chia, C.H.,
Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S.
2011. Citric acid modified kenaf core fibres for removal of methylene blue from
aqueous solution. Bioresource Technology 102(15): 7237-7243.
Sand, A., Mishra, D.K.,
Pandey, V.S., Mishra, M.M. & Behari, K. 2012. Synthesis of graft copolymer
(CgOH-g-AGA): Physicochemical properties, characterization and application. Carbohydrate
Polymers 90(2): 901-907.
Sannino, A., Demitri, C.
& Madaghiele, M. 2009. Biodegradable cellulose-based hydrogels: Design and
applications. Materials 2(2): 353-373.
Spagnol, C., Rodrigues,
F.H.A., Pereira, A.G.B., Fajardo, A.R., Rubira, A.F. & Muniz, E.C. 2012.
Superabsorbent hydrogel composite made of cellulose nanofibrils and
chitosan-graft-poly(acrylic acid). Carbohydrate Polymers 87(3):
2038-2045.
Tamura, H., Furuike, T.,
Nair, S.V. & Jayakumar, R. 2011. Biomedical applications of chitin hydrogel
membranes and scaffolds. Carbohydrate Polymers 84(2): 820-824.
Wang, N. & Wu, X.S.
1998. A novel approach to stabilization of protein drugs in
poly(lactic-co-glycolic acid) microspheres using agarose hydrogel. International
Journal of Pharmaceutics 166(1): 1-14.
Wang, X., Ye, G. &
Wang, X. 2014. Hydrogel diffraction gratings functionalized with crown ether
for heavy metal ion detection. Sensors and Actuators B: Chemical 193(0):
413-419.
Wang, Y., Huang, C.J.,
Jonas, U., Wei, T., Dostalek, J. & Knoll, W. 2010. Biosensor based on
hydrogel optical waveguide spectroscopy. Biosensors and Bioelectronics 25(7):
1663- 1668.
Wendler, F., Schulze,
T., Ciechanska, D., Wesolowska, E., Wawro, D., Meister, F., Budtova, T. &
Liebner, F. 2013. Cellulose products from solutions: Film, fibres and aerogels.
In The European Polysaccharide Network of Excellence (EPNOE), edited by
Navard, P. Vienna: Springer. pp. 153-185.
Zhang, L., Zheng, G.J.,
Guo, Y.T., Zhou, L., Du, J. & He, H. 2014. Preparation of novel
biodegradable pHEMA hydrogel for a tissue engineering scaffold by
microwave-assisted polymerization. Asian Pacific Journal of Tropical
Medicine 7(2): 136-140.
Zhong, K., Lin, Z.T.,
Zheng, X.L., Jiang, G.B., Fang, Y.S., Mao, X.Y. & Liao, Z.W. 2013. Starch
derivative-based superabsorbent with integration of water-retaining and
controlled-release fertilizers. Carbohydrate Polymers 92(2): 1367-1376.
*Corresponding author; email: azwanlazim@ukm.edu.my