Sains Malaysiana 44(6)(2015):
853–859
Graft Copolymerization of Acrylonitrile
onto Torch Ginger Cellulose
(Pengkopolimeran Cangkuk Akrilonitril ke atas
Selulosa Kantan)
FAZLIYANA AHMAD ZAKI & IBRAHIM ABDULLAH*
Faculty of Science and
Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Received: 15 January
2014/Accepted: 15 November 2014
ABSTRACT
Graft copolymerization of
acrylonitrile onto torch ginger cellulose was carried out in an aqueous medium
with ceric ion redox initiator. The optimum grafting parameters such as
temperature, reaction time, ratio of monomer to cellulose addition and ceric
ammonium nitrate (CAN)
concentration were determined and a maximum graft yield of 40% was recorded.
The graft copolymer was characterized and compared with untreated cellulose. A
new absorption peak corresponding to the nitrile group of acrylonitrile was
recorded by FTIR at 2244 cm-1 on the grafted cellulose. The
morphology studies showed that the diameter and the surface roughness of
grafted cellulose had increased as compared with the untreated cellulose. On
the contrary, the grafting had resulted in lowering the crystallinity of the
cellulose from 63 to 53%. The grafted cellulose produced a new derivative TG peak at 420°C and higher
residual percentage than the untreated cellulose.
Keywords: Acrylonitrile; cellulose;
graft copolymerization; torch ginger
ABSTRAK
Pengkopolimeran
cangkuk monomer akrilonitril ke atas selulosa telah dijalankan di dalam medium
akuas dengan pemula redoks ion serik. Parameter cangkukan optimum seperti suhu, tempoh tindak balas,
nisbah penambahan monomer kepada selulosa dan kepekatan serik amonium nitrat (CAN) telah ditentukan dengan hasil
cangkukan maksimum sebanyak 40% telah direkodkan. Kopolimer
cangkuk dicirikan dan perbandingan dilakukan dengan selulosa tanpa rawatan. Puncak serapan baru FTIR pada
selulosa tercangkuk telah dirakam pada 2244 cm-1 yang merujuk kepada kumpulan nitril daripada akrilonitril. Kajian morfologi menunjukkan diameter dan kekasaran permukaan
selulosa tercangkuk telah bertambah jika dibandingkan dengan selulosa tanpa
rawatan. Sebaliknya, proses cangkukan telah
mengakibatkan berlakunya penurunan kehabluran selulosa daripada 63 kepada 53%. Selulosa tercangkuk didapati telah menghasilkan puncak terbitan TG baru pada 420°C dengan peratus
residu yang lebih tinggi daripada selulosa tanpa rawatan.
Kata
kunci: Akrilonitril; kantan; pengkopolimeran cangkuk; selulosa
REFERENCES
Alemdar,
A. & Sain, M. 2008. Isolation and characterization of
nanofibers from agricultural residue - wheat straw and soy hulls. Bioresources
Technology 99: 1664-1671.
Badawy, S.M., Dessouki,
A.M. & El-Din, H.M.N. 2001. Direct pyrolysis mass spectrometry of
acrylonitrile-cellulose graft copolymer prepared by radiation-induced graft
polymerization in presence of styrene as homopolymer suppressor. Radiation
Physics and Chemistry 61: 143-148.
Bledzki, A.K., Mamun,
A.A., Lucka-Gabor, M. & Gutowski, V.S. 2008. The effects
of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters 2: 413-422.
Bhattacharya, A. &
Misra, B.N. 2004. Grafting: A versatile means to modify polymers. Techniques, factors and applications. Progress in Polymer
Science 29: 767-814.
Cao, Y., Shibata, S.
& Fukumoto, I. 2006. Mechanical properties of biodegradable composites
reinforced with bagasse fibre before and after alkali treatments. Composites:
Part A 37: 423-429.
Dahou,
W., Ghemati, D., Oudia, A. & Aliouche, D. 2010. Preparation and
biological characterization of cellulose graft copolymers. Biochemical
Engineering Journal 48: 187-194.
Fan,
G., Zhao, J., Zhang, Y. & Guo, Z. 2006. Grafting modification
of Kevlar fiber using horseradish peroxidase. Polymer Bulletin 56:
507-515.
Goyal, P., Kumar, V.
& Sharma, P. 2009. Graft copolymerization onto tamarind kernel powder: Ceric(IV)-initiated graft copolymerization of acrylonitrile. Journal of Applied Polymer Science 114: 377-386.
Hebeish, A. &
Guthrie, J.T. 1981. The Chemistry and Technology of Cellulosic Copolymers. Berlin:
Springer-Verlag.
Kumar,
V., Naithani, S. & Pandey, D. 2011. Optimization of reaction conditions for
grafting of α-cellulose isolated from Lantana camara with acrylamide. Carbohydrate
Polymers 86: 760-768.
Mondal, M.I.H., Alam, R.
& Sayeed, M.A. 2003. Graft copolymerization of nitrile monomers onto
bleached jute fiber using potassium persulfate system and their textile
characteristics. Journal of Applied Polymer Science 92: 3622-3629.
Raquez, J.M., Murena,
Y., Goffin, A.L., Habibi, Y., Ruelle, B., DeBuyl, F. & Dubois, P. 2012.
Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers
into polylactide: A sustainably-integrated approach. Composites Science and
Technology 72: 544-549.
Reddy, N. & Yang, Y.
2009. Properties and potential applications of natural
cellulose fibers from the bark of cotton stalks. Bioresource
Technology 100: 3563-3569.
Roy, D., Semsarilar, M.,
Guthrie, J.T. & Perrier, S. 2009. Cellulose modification by polymer
grafting: A review. Chemical Society Reviews 38: 1825-2148.
Singha, A.S. & Rana,
R.K. 2010. Effect of pressure induced graft copolymerization on the
physic-chemical properties of bio-fibers. Bioresources 5: 1055-1073.
Surianaryanan,
M., Vijayaraghavan, R. & Raghavan, K.V. 1998. Spectroscopic
investigations of polyacrylonitrile thermal degradation. J.
Polym. Sci. A: Polym. Chem. 36: 2503.
Thakur, V.K., Singha,
A.S. & Misra, B.N. 2011. Graft copolymerization of methyl methacrylate onto
cellulosic biofibers. Journal of Applied Polymer Science 122: 532-544.
Tosh, B. & Routray,
C.R. 2011. Homogeneous grafting of PMMA onto cellulose in
presence of Ce4+ as initiator. Indian Journal of Chemical
Technology 18: 234-243.
Zaki, F.A., Abdullah, I.
& Ahmad, I. 2014. The physical and chemical natures of cellulose extracted
from torch ginger stems. Int. J. Materials Engineering Innovation 5:
48-60.
*Corresponding author; email: dia@ukm.edu.my