Sains Malaysiana 44(6)(2015): 853–859

 

Graft Copolymerization of Acrylonitrile onto Torch Ginger Cellulose

(Pengkopolimeran Cangkuk Akrilonitril ke atas Selulosa Kantan)

 

FAZLIYANA AHMAD ZAKI & IBRAHIM ABDULLAH*

 

Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 January 2014/Accepted: 15 November 2014

 

ABSTRACT

Graft copolymerization of acrylonitrile onto torch ginger cellulose was carried out in an aqueous medium with ceric ion redox initiator. The optimum grafting parameters such as temperature, reaction time, ratio of monomer to cellulose addition and ceric ammonium nitrate (CAN) concentration were determined and a maximum graft yield of 40% was recorded. The graft copolymer was characterized and compared with untreated cellulose. A new absorption peak corresponding to the nitrile group of acrylonitrile was recorded by FTIR at 2244 cm-1 on the grafted cellulose. The morphology studies showed that the diameter and the surface roughness of grafted cellulose had increased as compared with the untreated cellulose. On the contrary, the grafting had resulted in lowering the crystallinity of the cellulose from 63 to 53%. The grafted cellulose produced a new derivative TG peak at 420°C and higher residual percentage than the untreated cellulose.

 

Keywords: Acrylonitrile; cellulose; graft copolymerization; torch ginger

 

ABSTRAK

Pengkopolimeran cangkuk monomer akrilonitril ke atas selulosa telah dijalankan di dalam medium akuas dengan pemula redoks ion serik. Parameter cangkukan optimum seperti suhu, tempoh tindak balas, nisbah penambahan monomer kepada selulosa dan kepekatan serik amonium nitrat (CAN) telah ditentukan dengan hasil cangkukan maksimum sebanyak 40% telah direkodkan. Kopolimer cangkuk dicirikan dan perbandingan dilakukan dengan selulosa tanpa rawatan. Puncak serapan baru FTIR pada selulosa tercangkuk telah dirakam pada 2244 cm-1 yang merujuk kepada kumpulan nitril daripada akrilonitril. Kajian morfologi menunjukkan diameter dan kekasaran permukaan selulosa tercangkuk telah bertambah jika dibandingkan dengan selulosa tanpa rawatan. Sebaliknya, proses cangkukan telah mengakibatkan berlakunya penurunan kehabluran selulosa daripada 63 kepada 53%. Selulosa tercangkuk didapati telah menghasilkan puncak terbitan TG baru pada 420°C dengan peratus residu yang lebih tinggi daripada selulosa tanpa rawatan.

 

Kata kunci: Akrilonitril; kantan; pengkopolimeran cangkuk; selulosa

REFERENCES

Alemdar, A. & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residue - wheat straw and soy hulls. Bioresources Technology 99: 1664-1671.

Badawy, S.M., Dessouki, A.M. & El-Din, H.M.N. 2001. Direct pyrolysis mass spectrometry of acrylonitrile-cellulose graft copolymer prepared by radiation-induced graft polymerization in presence of styrene as homopolymer suppressor. Radiation Physics and Chemistry 61: 143-148.

Bledzki, A.K., Mamun, A.A., Lucka-Gabor, M. & Gutowski, V.S. 2008. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters 2: 413-422.

Bhattacharya, A. & Misra, B.N. 2004. Grafting: A versatile means to modify polymers. Techniques, factors and applications. Progress in Polymer Science 29: 767-814.

Cao, Y., Shibata, S. & Fukumoto, I. 2006. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites: Part A 37: 423-429.

Dahou, W., Ghemati, D., Oudia, A. & Aliouche, D. 2010. Preparation and biological characterization of cellulose graft copolymers. Biochemical Engineering Journal 48: 187-194.

Fan, G., Zhao, J., Zhang, Y. & Guo, Z. 2006. Grafting modification of Kevlar fiber using horseradish peroxidase. Polymer Bulletin 56: 507-515.

Goyal, P., Kumar, V. & Sharma, P. 2009. Graft copolymerization onto tamarind kernel powder: Ceric(IV)-initiated graft copolymerization of acrylonitrile. Journal of Applied Polymer Science 114: 377-386.

Hebeish, A. & Guthrie, J.T. 1981. The Chemistry and Technology of Cellulosic Copolymers. Berlin: Springer-Verlag.

Kumar, V., Naithani, S. & Pandey, D. 2011. Optimization of reaction conditions for grafting of α-cellulose isolated from Lantana camara with acrylamide. Carbohydrate Polymers 86: 760-768.

Mondal, M.I.H., Alam, R. & Sayeed, M.A. 2003. Graft copolymerization of nitrile monomers onto bleached jute fiber using potassium persulfate system and their textile characteristics. Journal of Applied Polymer Science 92: 3622-3629.

Raquez, J.M., Murena, Y., Goffin, A.L., Habibi, Y., Ruelle, B., DeBuyl, F. & Dubois, P. 2012. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Composites Science and Technology 72: 544-549.

Reddy, N. & Yang, Y. 2009. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology 100: 3563-3569.

Roy, D., Semsarilar, M., Guthrie, J.T. & Perrier, S. 2009. Cellulose modification by polymer grafting: A review. Chemical Society Reviews 38: 1825-2148.

Singha, A.S. & Rana, R.K. 2010. Effect of pressure induced graft copolymerization on the physic-chemical properties of bio-fibers. Bioresources 5: 1055-1073.

Surianaryanan, M., Vijayaraghavan, R. & Raghavan, K.V. 1998. Spectroscopic investigations of polyacrylonitrile thermal degradation. J. Polym. Sci. A: Polym. Chem. 36: 2503.

Thakur, V.K., Singha, A.S. & Misra, B.N. 2011. Graft copolymerization of methyl methacrylate onto cellulosic biofibers. Journal of Applied Polymer Science 122: 532-544.

Tosh, B. & Routray, C.R. 2011. Homogeneous grafting of PMMA onto cellulose in presence of Ce4+ as initiator. Indian Journal of Chemical Technology 18: 234-243.

Zaki, F.A., Abdullah, I. & Ahmad, I. 2014. The physical and chemical natures of cellulose extracted from torch ginger stems. Int. J. Materials Engineering Innovation 5: 48-60.

 

 

*Corresponding author; email: dia@ukm.edu.my

 

 

previous