Sains Malaysiana 44(6)(2015): 875–881

 

Effects of MgO Particle Loading on Gas Permeation Properties of Epoxidized Natural Rubber (ENR) / Polyvinyl Chloride (PVC) Membrane

(Kesan Penambahan Partikel MgO ke atas Ketelapan Gas bagi Membran Getah Asli Terepoksida (ENR) / Polivinil Klorida (PVC))

 

FARHAN MOHD NOR & RIZAFIZAH OTHAMAN*

 

Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 15 January 2014/Accepted: 15 November 2014

 

ABSTRACT

A composite membrane was prepared by mixing epoxidized natural rubber (ENR) and polyvinyl chloride (PVC). An inorganic filler, MgO, was introduced into the polymer matrix by certain percentages to form a mixed matrix membrane (MMM). The resulting membranes were characterized using FTIR, TGA, SEM and gas permeability test. FTIR results showed the incorporation of MgO inside the membrane matrix with the appearance of an absorption peak at 3700 cm-1 which represents the formation of Mg(OH)2. Thermogram from TGA analysis showed two degradation stages at 250-350°C and 370-500°C, which correspond to the decomposition of PVC and ENR and the residue of fillers at 600°C. SEM images of the membranes showed that pores were developed as fillers were introduced to the membrane. The size of the pores also increased with the increase of filler percentage. As for gas permeation test, the permeability values of CO2 and N2 for ENR/PVC membrane were the lowest. The permeability values increased with the addition of MgO to the membrane. The permeability of CO2 was also the highest for all membranes.

 

Keywords: ENR-50; gas separation; inorganic filler; polyvinyl chloride

 

ABSTRAK

Membran komposit telah disediakan dengan mencampurkan getah asli terepoksida (ENR) dengan polivinil klorida (PVC). Pengisi tak organik (MgO) telah dimasukkan ke dalam matriks polimer tersebut dengan peratusan tertentu untuk menghasilkan membran campuran matriks (MMM). Membran yang terhasil telah dicirikan dengan menggunakan FTIR, TGA, SEM dan ujian ketelapan gas. Keputusan ujian FTIR telah menunjukkan kehadiran MgO di dalam matriks membran apabila terdapat puncak serapan pada 3700 cm-1 yang mewakili pembentukan Mg(OH)2. Termogram daripada analisis TGA menunjukkan dua peringkat penguraian, iaitu pada 250-350°C dan 370-500°C yang mewakili penguraian PVC dan ENR. Residu pada suhu 600°C pula adalah disebabkan pengisi yang tidak terurai. Mikrograf daripada ujian SEM menunjukkan kehadiran liang dengan kehadiran pengisi di dalam matriks membran. Saiz liang juga dilihat bertambah dengan penambahan peratusan pengisi. Untuk ujian ketelapan gas, nilai ketelapan gas CO2 dan N2 bagi membran ENR/PVC adalah yang terendah. Nilai ketelapan dilihat semakin meningkat dengan penambahan MgO ke dalam membran. Ketelapan gas CO2 pula adalah yang tertinggi bagi semua membran.

 

Kata kunci: ENR-50; pemisahan gas; pengisi tak organik; polivinil klorida

REFERENCES

Arthanareeswaran, G., Sriyamuna Devi, T.K. & Raajenthiren, M. 2008. Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Separation and Purification Technology 64(1): 38-47.

Bandyopadhyay, A., Sarkar, M. & Bhowmick, A. 2006. Structure-property relationship in sol-gel derived polymer/silica hybrid nanocomposites prepared at various pH. Journal of Materials Science 41(18): 5981-5993.

Blazevska-Gilev, J. & Spasesk, D. 2010. Formal kinetic analysis of PVC thermal degradation. Journal of the University of Chemical Technology and Metallurgy 45(3): 251-254.

Chen, S.H., Huang, S.L., Yu, K.C., Lai, J.Y. & Liang, M.T. 2000. Effect of CO2 treated polycarbonate membranes on gas transport and sorption properties. Journal of Membrane Science 172(1-2): 105-112.

Chen, W., Su, Y., Zhang, L., Shi, Q., Peng, J. & Jiang, Z. 2010. In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. Journal of Membrane Science 348(1-2): 75-83.

Chung, T.S., Jiang, L.Y., Li, Y. & Kulprathipanja, S. 2007. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science 32(4): 483-507.

Dobre, T., Pârvulescu, O.C., Sanchez-Marcano, J., Stoica, A., Stroescu, M. & Iavorschi, G. 2011. Characterization of gas permeation through stretched polyisoprene membranes. Separation and Purification Technology 82: 202-209.

Foster, M., Furse, M. & Passno, D. 2002. An FTIR study of water thin films on magnesium oxide. Surface Science 502- 503: 102-108.

Ge, L., Zhu, Z. & Rudolph, V. 2011. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Separation and Purification Technology 78(1): 76-82.

Goh, P.S., Ismail, A.F., Sanip, S.M., Ng, B.C. & Aziz, M. 2011. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology 81(3): 243-264.

Hakim, R.N. & Ismail, H. 2009. Comparison of the effects of organoclay loading on the curing and mechanical properties of organoclay-filled epoxidised natural rubber nanocomposites and organoclay-filled natural rubber nanocomposites. Journal of Physical Science 20(2): 37-59.

Hosseini, S.S., Li, Y., Chung, T.S. & Liu, Y. 2007. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science 302(1-2): 207-217.

Ibrahim, A. & Dahlan, M. 1998. Thermoplastic natural rubber blends. Progress in Polymer Science 23(4): 665-706.

Jadav, G.L. & Singh, P.S. 2009. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. Journal of Membrane Science 328(1-2): 257-267.

Johnson, T. & Thomas, S. 1999. Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends. Polymer 40(11): 3223-3228.

Jon, N., Samad, N.A., Abdullah, N.A., Abdullah, I. & Othaman, R. 2013. Influence of silica addition on the properties of epoxidised natural rubber/polyvinyl chloride composite membrane. Journal of Applied Polymer Science 129(5): 2789-2795.

Khudyakov, I.V., Zopf, D.R. & Turro, N.J. 2009. Polyurethane nanocomposites. Designed Monomers and Polymers 12(4): 279-290.

Matteucci, S., Raharjo, R.D., Kusuma, V.A., Swinnea, S. & Freeman, B.D. 2008. Gas permeability, solubility, and diffusion coefficients in 1,2-Polybutadiene containing magnesium oxide. Macromolecules 41(6): 2144-2156.

Nagasaki, Y., Hashimoto, Y., Kato, M. & Kimijima, T. 1996. Gas permeation properties of organosilicon-containing polystyrenes. Journal of Membrane Science 110(1): 91-97.

Rajabi, Z., Moghadassi, A.R., Hosseini, S.M. & Mohammadi, M. 2013. Preparation and characterization of polyvinylchloride based mixed matrix membrane filled with multi walled carbon nano tubes for carbon dioxide separation. Journal of Industrial and Engineering Chemistry 19(1): 347-352.

Robeson, L.M. 2008. The upper bound revisited. Journal of Membrane Science 320(1-2): 390-400.

Robeson, L.M. 1991. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62(2): 165-185.

Scholes, C.A., Kentish, S.E. & Stevens, G.W. 2008. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering 1: 52-66.

Şen, D., Kal?pç?lar, H. & Yilmaz, L. 2007. Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes. Journal of Membrane Science 303(1- 2): 194-203.

Wahab, M.F.A., Ismail, A.F. & Shilton, S.J. 2012. Studies on gas permeation performance of asymmetric polysulfone hollow fiber mixed matrix membranes using nanosized fumed silica as fillers. Separation and Purification Technology 86: 41-48.

Zulfikar, M.A., Mohammad, A.W., Kadhum, A.A. & Hilal, N. 2007. Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane. Materials Science and Engineering: A 452453: 422-426.

 

 

*Corresponding author; email: rizafizah@ukm.edu.my

 

previous