Sains Malaysiana 44(6)(2015):
883–891
Optimization of Oil Palm Fronds Conversion to
Levulinic Acid using Fe/HY Zeolite Catalyst
(Pengoptimuman Penukaran Pelepah Kelapa Sawit
kepada Asid Levulinik menggunakan Pemangkin Fe/HY Zeolit)
NUR AAINAA SYAHIRAH RAMLI
& NOR AISHAH SAIDINA AMIN*
Chemical Reaction Engineering Group
(CREG), Faculty of Chemical Engineering
Universiti Teknologi Malaysia, 81310 UTM
Skudai, Johor Darul Takzim, Malaysia
Received: 24 September 2014/Accepted: 13
January 2015
ABSTRACT
Levulinic acid (LA)
is a versatile platform chemical with numerous potential uses. Conversion of
oil palm fronds (OPF) to LA over
Fe/HY zeolite catalyst has been conducted in this study. The
optimization process using Box-Behnken design gave 19.6% of LA yield
at 181.7°C reaction temperature, 7.7 h reaction time, 1.13 g Fe/HY zeolite
loading and 0.25 g OPF loading. The efficiency of OPF conversion
at the optimum conditions was determined to be 61.1%. It was also demonstrated
that Fe/HY zeolite gave sufficient performance for five
successive cycles of OPF conversion to LA.
The results suggested that Fe/HY zeolite is potential as
catalyst for biomass conversion to LA.
Keywords: Fe/HY zeolite;
levulinic acid; oil palm fronds; optimization
ABSTRAK
Asid levulinik (LA)
merupakan bahan kimia serbaguna dengan pelbagai potensi penggunaan. Penukaran
pelepah kelapa sawit (OPF) kepada LA menggunakan
pemangkin Fe/HY zeolit telah dijalankan di dalam kajian ini. Proses
pengoptimuman menggunakan reka bentuk Box-Behnken memberikan hasil LA sebanyak
19.6% pada suhu tindak balas 173.4°C, masa tindak balas 3.3 h, suapan Fe/HY zeolite
1.13 g dan suapan OPF 0.25 g. Kecekapan penukaran OPF pada
keadaan optima ialah 61.1%. Ia juga menunjukkan bahawa Fe/HY zeolit
memberikan prestasi yang mencukupi untuk lima kitaran berturutan bagi penukaran OPF kepada LA. Keputusan menunjukkan bahawa Fe/HY zeolite
berpotensi sebagai pemangkin bagi penukaran biojisim kepada LA.
Kata
kunci: Asid levulinik; Fe/HY zeolite; pelepah
kelapa sawit; pengoptimuma
REFERENCES
Cha, J.Y. & Hanna,
M.A. 2002. Levulinic acid production based on extrusion and pressurized batch
reaction. Industrial Crops and Products 16(2): 109-118.
Chang, C., Cen, P. &
Ma, X. 2007. Levulinic acid production from wheat straw. Bioresource
Technology 98(7): 1448- 1453.
Chen, H., Yu, B. &
Jin, S. 2011. Production of levulinic acid from steam exploded rice straw via
solid superacid. Bioresource Technology 102(3): 3568-3570.
Fang, Q. & Hanna,
M.A. 2002. Experimental studies for levulinic acid production from whole kernel
grain sorghum. Bioresource Technology 81(3): 187-192.
Girisuta, B., Danon, B.,
Manurung, R., Janssen, L.P.B.M. & Heeres, H.J. 2008. Experimental and
kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth
plant to levulinic acid. Bioresource Technology 99(17): 8367-8375.
Hu, L., Sun, Y. &
Lin, L. 2011. Efficient conversion of glucose into 5-Hydroxymethylfurfural by
chromium(III) chloride in inexpensive ionic liquid. Industrial &
Engineering Chemistry Research 51(3): 1099-1104.
Jow, J., Rorrer, G.L.,
Hawley, M.C. & Lamport, D.T.A. 1987. Dehydration of d-fructose to levulinic
acid over LZY zeolite catalyst. Biomass 14(3): 185-194.
Kang, M., Kim, S.W.,
Kim, J.W., Kim, T.H. & Kim, J.S. 2013. Optimization of levulinic acid
production from Gelidium amansii. Renewable Energy 54(0): 173-179.
Lee, S.K., Jang, Y.N.,
Bae, I.K., Chae, S.C., Ryu, K.W. & Kim, J.K. 2009. Adsorption of toxic
gases on iron-incorporated Na-A zeolites synthesized from melting slag. Materials
Transactions 50(10): 2476-2483.
Liu, Y., Lin, L., Sui, X.Y., Zhuang, J.P.
& Pang, C.S. 2012. Characterization of ZSM-5 during conversion of glucose
to levulinic acid. Applied Mechanics and Materials 260-261: 1206-1209.
Lourvanij, K. & Rorrer, G.L. 1993.
Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at
110-160 .degree.C. Industrial & Engineering Chemistry Research 32(1):
11-19.
Mao, L., Zhang, L., Gao, N. & Li, A.
2013. Seawater-based furfural production via corncob hydrolysis catalyzed by
FeCl3 in acetic acid steam. [10.1039/C2GC36346A]. Green Chemistry 15(3):
727-737.
Peng, L., Lin, L., Zhang, J., Zhuang, J.,
Zhang, B. & Gong, Y. 2010. Catalytic conversion of cellulose to levulinic
acid by metal chlorides. Molecules 15(8): 5258-5272.
Rackemann, D.W. & Doherty, W.O.S.
2011. The conversion of lignocellulosics to levulinic acid. Biofuels,
Bioproducts and Biorefining 5(2): 198-214.
Ramli, N.A.S. & Amin, N.A.S. 2015.
Fe/HY zeolite as an effective catalyst for levulinic acid production from
glucose: Characterization and catalytic performance. Applied Catalysis B:
Environmental 163(0): 487-498.
Ramli, N.A.S. & Amin, N.A.S. 2014.
Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to
reducing sugar for levulinic acid production. Fuel Processing Technology 128(0):
490-498.
Tan, M., Zhao, L. & Zhang, Y. 2011.
Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl
system. Biomass and Bioenergy 35(3): 1367-1370.
Tao, F., Song, H. & Chou, L. 2010.
Hydrolysis of cellulose by using catalytic amounts of FeCl2 in ionic liquids. ChemSusChem 3(11): 1298-1303.
Wan Omar, W.N.N. & Saidina Amin, N.A.
2011. Optimization of heterogeneous biodiesel production from waste cooking
palm oil via response surface methodology. Biomass and Bioenergy 35(3):
1329-1338.
Ya’aini, N., Amin, N.A.S. & Asmadi,
M. 2012. Optimization of levulinic acid from lignocellulosic biomass using a
new hybrid catalyst. Bioresource Technology 116(0): 58-65.
Yuan, Z., Xu, C., Cheng, S. & Leitch,
M. 2011. Catalytic conversion of glucose to 5-hydroxymethyl furfural using
inexpensive co-catalysts and solvents. Carbohydrate Research 346(13):
2019-2023.
Zeng, W., Cheng, D.G., Zhang, H., Chen,
F. & Zhan, X. 2010. Dehydration of glucose to levulinic acid over MFI-type
zeolite in subcritical water at moderate conditions. Reaction Kinetics,
Mechanisms and Catalysis 100(2): 377-384.
Zhang, Z. & Zhao, Z.K. 2009. Solid
acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydrate
Research 344(15): 2069-2072.
*Corresponding author; email: noraishah@cheme.utm.my