Sains Malaysiana 44(6)(2015): 883–891

 

Optimization of Oil Palm Fronds Conversion to Levulinic Acid using Fe/HY Zeolite Catalyst

(Pengoptimuman Penukaran Pelepah Kelapa Sawit kepada Asid Levulinik menggunakan Pemangkin Fe/HY Zeolit)

 

NUR AAINAA SYAHIRAH RAMLI & NOR AISHAH SAIDINA AMIN*

 

Chemical Reaction Engineering Group (CREG), Faculty of Chemical Engineering

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

 

Received: 24 September 2014/Accepted: 13 January 2015

 

ABSTRACT

Levulinic acid (LA) is a versatile platform chemical with numerous potential uses. Conversion of oil palm fronds (OPF) to LA over Fe/HY zeolite catalyst has been conducted in this study. The optimization process using Box-Behnken design gave 19.6% of LA yield at 181.7°C reaction temperature, 7.7 h reaction time, 1.13 g Fe/HY zeolite loading and 0.25 g OPF loading. The efficiency of OPF conversion at the optimum conditions was determined to be 61.1%. It was also demonstrated that Fe/HY zeolite gave sufficient performance for five successive cycles of OPF conversion to LA. The results suggested that Fe/HY zeolite is potential as catalyst for biomass conversion to LA.

 

Keywords: Fe/HY zeolite; levulinic acid; oil palm fronds; optimization

 

ABSTRAK

Asid levulinik (LA) merupakan bahan kimia serbaguna dengan pelbagai potensi penggunaan. Penukaran pelepah kelapa sawit (OPF) kepada LA menggunakan pemangkin Fe/HY zeolit telah dijalankan di dalam kajian ini. Proses pengoptimuman menggunakan reka bentuk Box-Behnken memberikan hasil LA sebanyak 19.6% pada suhu tindak balas 173.4°C, masa tindak balas 3.3 h, suapan Fe/HY zeolite 1.13 g dan suapan OPF 0.25 g. Kecekapan penukaran OPF pada keadaan optima ialah 61.1%. Ia juga menunjukkan bahawa Fe/HY zeolit memberikan prestasi yang mencukupi untuk lima kitaran berturutan bagi penukaran OPF kepada LA. Keputusan menunjukkan bahawa Fe/HY zeolite berpotensi sebagai pemangkin bagi penukaran biojisim kepada LA.

 

Kata kunci: Asid levulinik; Fe/HY zeolite; pelepah kelapa sawit; pengoptimuma

REFERENCES

 

Cha, J.Y. & Hanna, M.A. 2002. Levulinic acid production based on extrusion and pressurized batch reaction. Industrial Crops and Products 16(2): 109-118.

Chang, C., Cen, P. & Ma, X. 2007. Levulinic acid production from wheat straw. Bioresource Technology 98(7): 1448- 1453.

Chen, H., Yu, B. & Jin, S. 2011. Production of levulinic acid from steam exploded rice straw via solid superacid. Bioresource Technology 102(3): 3568-3570.

Fang, Q. & Hanna, M.A. 2002. Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresource Technology 81(3): 187-192.

Girisuta, B., Danon, B., Manurung, R., Janssen, L.P.B.M. & Heeres, H.J. 2008. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresource Technology 99(17): 8367-8375.

Hu, L., Sun, Y. & Lin, L. 2011. Efficient conversion of glucose into 5-Hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Industrial & Engineering Chemistry Research 51(3): 1099-1104.

Jow, J., Rorrer, G.L., Hawley, M.C. & Lamport, D.T.A. 1987. Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst. Biomass 14(3): 185-194.

Kang, M., Kim, S.W., Kim, J.W., Kim, T.H. & Kim, J.S. 2013. Optimization of levulinic acid production from Gelidium amansii. Renewable Energy 54(0): 173-179.

Lee, S.K., Jang, Y.N., Bae, I.K., Chae, S.C., Ryu, K.W. & Kim, J.K. 2009. Adsorption of toxic gases on iron-incorporated Na-A zeolites synthesized from melting slag. Materials Transactions 50(10): 2476-2483.

Liu, Y., Lin, L., Sui, X.Y., Zhuang, J.P. & Pang, C.S. 2012. Characterization of ZSM-5 during conversion of glucose to levulinic acid. Applied Mechanics and Materials 260-261: 1206-1209.

Lourvanij, K. & Rorrer, G.L. 1993. Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110-160 .degree.C. Industrial & Engineering Chemistry Research 32(1): 11-19.

Mao, L., Zhang, L., Gao, N. & Li, A. 2013. Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. [10.1039/C2GC36346A]. Green Chemistry 15(3): 727-737.

Peng, L., Lin, L., Zhang, J., Zhuang, J., Zhang, B. & Gong, Y. 2010. Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8): 5258-5272.

Rackemann, D.W. & Doherty, W.O.S. 2011. The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts and Biorefining 5(2): 198-214.

Ramli, N.A.S. & Amin, N.A.S. 2015. Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance. Applied Catalysis B: Environmental 163(0): 487-498.

Ramli, N.A.S. & Amin, N.A.S. 2014. Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Processing Technology 128(0): 490-498.

Tan, M., Zhao, L. & Zhang, Y. 2011. Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system. Biomass and Bioenergy 35(3): 1367-1370.

Tao, F., Song, H. & Chou, L. 2010. Hydrolysis of cellulose by using catalytic amounts of FeCl2 in ionic liquids. ChemSusChem 3(11): 1298-1303.

Wan Omar, W.N.N. & Saidina Amin, N.A. 2011. Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass and Bioenergy 35(3): 1329-1338.

Ya’aini, N., Amin, N.A.S. & Asmadi, M. 2012. Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst. Bioresource Technology 116(0): 58-65.

Yuan, Z., Xu, C., Cheng, S. & Leitch, M. 2011. Catalytic conversion of glucose to 5-hydroxymethyl furfural using inexpensive co-catalysts and solvents. Carbohydrate Research 346(13): 2019-2023.

Zeng, W., Cheng, D.G., Zhang, H., Chen, F. & Zhan, X. 2010. Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions. Reaction Kinetics, Mechanisms and Catalysis 100(2): 377-384.

Zhang, Z. & Zhao, Z.K. 2009. Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydrate Research 344(15): 2069-2072.

 

 

*Corresponding author; email: noraishah@cheme.utm.my

 

 

 

previous