Sains Malaysiana 44(6)(2015): 899–904

 

Sequential Saccharification and Simultaneous Fermentation (SSSF) of Sago Hampas for the Production of Bioethanol

(Sakarifikasi dan Fermentasi Serentak Berperingkat (SSSF) Hampas Sago untuk Penghasilan Bioetanol)

MICKY VINCENT*, BERRY RENCE ANAK SENAWI, ENNRY ESUT, NORIZAWATI MUHAMMAD NOR & DAYANG SALWANI AWANG ADENI

 

Department of Molecular Biology, Faculty of Resource Science and Technology

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

Received: 22 July 2014/Accepted: 13 January 2015

 

ABSTRACT

Bioethanol is a very environmentally friendly liquid biofuel that is not only renewable, but also sustainable. It is currently deemed as a highly suitable additive and substitute energy source to replace fossil based fuel. In this study, bioethanol was produced from sago hampas by using commercial amylase, cellulase and Saccharomyces cerevisiae via sequential saccharification and simultaneous fermentation (SSSF), a modified version of the simultaneous saccharification and fermentation (SSF) process. SSSF was performed on sago hampas at 2.5 and 5.0% (w/v) feedstock load for five days. The samples taken from the SSSF broths were analysed via high performance liquid chromatography (HPLC) for ethanol, glucose and acetic acid production. From the results obtained, SSSF with 5.0% sago hampas loading exhibited the highest ethanol production at 14.13 g/L (77.43% of theoretical ethanol yield), while SSSF using 2.5% sago hampas loading produced ethanol at 6.45 g/L (69.24% of theoretical ethanol yield). This study has shown that ethanol not only can be produced from sago hampas using different enzyme mixtures and S. cerevisiae via SSSF, but yields were also high, making this process highly promising for the production of cheap and sustainable ethanol as fuel.

 

Keywords: Amylase; bioethanol; cellulase sago hampas; sequential saccharification and simultaneous fermentation (SSSF)

 

ABSTRAK

Bioetanol adalah bahan api mesra alam yang bukan sahaja boleh diperbaharui, tetapi juga mapan. Ia kini dianggap sebagai bahan api tambahan dan tenaga pengganti yang sangat sesuai untuk menggantikan bahan api berasaskan fosil. Dalam kajian ini, bioetanol dihasilkan daripada hampas sagu dengan menggunakan enzim amilase komersial, selulase dan Saccharomyces cerevisiae melalui proses sakarifikasi dan fermentasi serentak berperingkat (SSSF), iaitu proses sakarifikasi dan fermentasi serentak (SSF) yang telah diubah suai. SSSF telah dijalankan ke atas 2.5 dan 5.0% (w/v) selama lima hari. Sampel yang diambil daripada kaldu SSSF dianalisis melalui kromatografi cecair prestasi tinggi (HPLC) untuk menentukan kepekatan etanol, glukosa dan asid asetik. Daripada keputusan yang diperoleh, SSSF dengan 5.0% hampas sagu didapati menghasilkan etanol yang tertinggi iaitu 14.13 g/L (77.43% daripada hasilan teori etanol), manakala SSSF menggunakan 2.5% hampas sagu menghasilkan etanol pada 6.45 g/L (69.24 % daripada hasilan teori etanol). Kajian ini telah menunjukkan etanol bukan sahaja boleh dihasilkan daripada hampas sagu menggunakan campuran enzim yang berbeza dan S. cerevisiae melalui SSSF, tetapi penghasilannya juga adalah tinggi, menjadikan proses ini sangat berpotensi untuk menghasilkan etanol dengan kos rendah.

 

Kata kunci: Amilase; bioetanol; hampas sagu; sakarifikasi dan fermentasi serentak berperingkat (SSSF); selulase

 

REFERENCES

Adeni, D.S.A., Abd-Aziz, S., Bujang, B. & Hassan, M.H. 2010. Review: Bioconversion of sago residue into value added products. African Journal of Biotechnology 9(14): 2016-2021.

Aiyer, P.V. 2005. Amylases and their applications. African Journal of Biotechnology 4(13): 1525-1529.

Altintas, M., Ulgen, K.O., Kirdar, B., Onsan, Z.I. & Oliver, S.G. 2002. Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme and Microbial Technology 31: 640-647.

Bujang, K. & Ahmad, F.B. 2000. Country report of Malaysia. Production and utilization of sago starch in Malaysia. International Sago Seminar. pp. 1-8.

Bujang, K., Apun, K. & Salleh, M.A. 1996. A study in the production and bioconversion of sago waste. In Sago - The Future Source of Food and Feed, edited by Jose, C. & Rasyad, A. Indonesia: Riau University Press. pp. 195-201.

Cervero, J.M., Skovgaard, P.A., Felby, C., Sorensen, H.R. & Jorgensen, H. 2010. Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme and Microbial Technology 46: 177-184.

Chew, T.Y. & Shim, Y.L. 1993. Management of sago processing wastes. In Waste Management in Malaysia - Current Status and Prospects for Bioremediation, edited by Yeoh, B.G., Chee, K.S., Phang, S.M., Isa, Z., Idris, A. & Mohamed, M. Kuala Lumpur: Ministry of Science, Technology and the Environment.

Isci, A., Himmelsbach, J.N., Strohl, J., Pometto, A.L., Raman, D.R. & Anex, R.P. 2008. Pilot-scale fermentation of aqueous-ammonia-soaked switchgrass. Applied Biochemistry and Biotechnology 157(3): 453-462.

Periyasamy, S. 2009. Production of bioethanol from sugar molasses using Saccharomyces cerevisiae. Modern Applied Science 3(8): 32-37.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. 2005. Determination of ash in biomass. http:// www.nrel.gov/docs/gen/fy08/42622.pdf.

Spindler, D.D., Wyman, C.E. & Grohmann, K. 1991. The simultaneous saccharification and fermentation of pretreated woody crops to ethanol. Applied Biochemistry and Biotechnology 28 & 29: 773-786.

Undersander, D., Mertens, D.R. & Thiex, N. 1993. Forage analyses procedures. http://www.foragetesting.org/files/ LaboratoryProcedures.pdf.

Vincent, M. 2010. Sequential saccharification and fermentation of corn stover for the production of fuel ethanol using wood-rot fungi, Saccharomyces cerevisiae and Escherichia coli K011. PhD Thesis. Iowa State University, Iowa, US (unpublished).

Vincent, M., Pometto III, A.L. & van Leeuwen, J. (Hans). 2014. Ethanol production via simultaneous saccharification and fermentation of sodium hydroxide treated corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum. Bioresource Technology 158: 1-6.

Vincent, M., Anthony, L. & van Leeuwen, J. (Hans). 2011a. Evaluation of potential fungal species for the in situ simultaneous saccharification and fermentation (SSF) of cellulosic materials. Malaysian Journal of Microbiology 7(3): 120-138.

Vincent, M., Anthony, L. & van Leeuwen, J. (Hans). 2011b. Simultaneous saccharification and fermentation of ground corn stover for the production of ethanol using Phanerocheate chrysoporium, Gloeophyllum trabeum, Saccharomyces cerevisiae and Escherichia coli K011. Journal of Microbiology and Biotechnology 21(7): 703-710.

Vogel, K.P., Pedersen, J.F., Masterson, S.D. & Toy, J.J. 1999. Evaluation of a filter bag system for NDF, ADF and IVDMD forage analysis. Crop Science 39: 276-279.

Wu, Z. & Lee, Y.Y. 1998. Non-isothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Applied Biochemistry and Biotechnology 70-72: 479-492.

Yamashita, Y., Sasaki, C. & Nakamura, Y. 2010. Development of efficient system for ethanol production from paper sludge pretreated by ball milling and phosphoric acid. Carbohydrate and Polymer 79: 250- 254.

Yang, S., Land, M.L., Klingeman, D.M., Pelletier, D.A., Lu, T.S., Martin, S.T., Guo, H., Smith, J.C. & Brown, S.D. 2010. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Applied Biological Sciences 107(23): 10395-10400.

Zakaria, S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization of residue from EFB and kenaf core fibres in the liquefaction process. Sains Malaysiana 43(3): 429-435.

Zakaria, S., Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of novolak-type resin made from liquefaction of oil palm empty fruit bunch (EFB) fibres using sulfuric acid as a catalyst. Bioresources 8(4): 5884-5894.

 

 

*Corresponding author; email: vmicky@frst.unimas.my

 

 

 

previous