Sains Malaysiana 44(6)(2015):
899–904
Sequential Saccharification and Simultaneous
Fermentation (SSSF) of Sago Hampas for the Production of Bioethanol
(Sakarifikasi dan Fermentasi Serentak
Berperingkat (SSSF)
Hampas Sago untuk Penghasilan Bioetanol)
MICKY VINCENT*, BERRY RENCE ANAK SENAWI, ENNRY ESUT, NORIZAWATI MUHAMMAD NOR & DAYANG SALWANI AWANG ADENI
Department of Molecular
Biology, Faculty of Resource Science and Technology
Universiti Malaysia
Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
Received: 22 July 2014/Accepted:
13 January 2015
ABSTRACT
Bioethanol is a very environmentally
friendly liquid biofuel that is not only renewable, but also sustainable. It is
currently deemed as a highly suitable additive and substitute energy source to
replace fossil based fuel. In this study, bioethanol was produced from sago hampas
by using commercial amylase, cellulase and Saccharomyces cerevisiae via
sequential saccharification and simultaneous fermentation (SSSF),
a modified version of the simultaneous saccharification and fermentation (SSF) process. SSSF was performed on sago hampas at 2.5 and 5.0% (w/v) feedstock load
for five days. The samples taken from the SSSF broths were analysed via high performance liquid chromatography (HPLC) for ethanol, glucose and
acetic acid production. From the results obtained, SSSF with 5.0% sago hampas loading
exhibited the highest ethanol production at 14.13 g/L (77.43% of theoretical
ethanol yield), while SSSF using
2.5% sago hampas loading produced ethanol at 6.45 g/L (69.24% of theoretical
ethanol yield). This study has shown that ethanol not only can be produced from
sago hampas using different enzyme mixtures and S. cerevisiae via SSSF, but yields were also high,
making this process highly promising for the production of cheap and
sustainable ethanol as fuel.
Keywords: Amylase; bioethanol;
cellulase sago hampas; sequential saccharification and simultaneous
fermentation (SSSF)
ABSTRAK
Bioetanol adalah bahan api mesra alam yang bukan sahaja boleh diperbaharui, tetapi
juga mapan. Ia kini dianggap sebagai bahan api tambahan dan tenaga pengganti yang sangat sesuai untuk menggantikan bahan api
berasaskan fosil. Dalam kajian ini, bioetanol dihasilkan daripada hampas sagu
dengan menggunakan enzim amilase komersial, selulase dan Saccharomyces
cerevisiae melalui proses sakarifikasi dan fermentasi serentak berperingkat
(SSSF), iaitu proses sakarifikasi
dan fermentasi serentak (SSF)
yang telah diubah suai. SSSF telah
dijalankan ke atas 2.5 dan 5.0% (w/v) selama lima hari. Sampel yang diambil daripada kaldu SSSF dianalisis melalui kromatografi cecair prestasi tinggi (HPLC) untuk menentukan kepekatan
etanol, glukosa dan asid asetik. Daripada keputusan yang diperoleh, SSSF dengan 5.0% hampas sagu
didapati menghasilkan etanol yang tertinggi iaitu 14.13 g/L (77.43% daripada
hasilan teori etanol), manakala SSSF menggunakan
2.5% hampas sagu menghasilkan etanol pada 6.45 g/L (69.24 % daripada hasilan
teori etanol). Kajian ini telah menunjukkan etanol bukan sahaja boleh
dihasilkan daripada hampas sagu menggunakan campuran enzim yang berbeza dan S.
cerevisiae melalui SSSF,
tetapi penghasilannya juga adalah tinggi, menjadikan proses ini sangat
berpotensi untuk menghasilkan etanol dengan kos rendah.
Kata kunci: Amilase; bioetanol; hampas sagu; sakarifikasi dan
fermentasi serentak berperingkat (SSSF);
selulase
REFERENCES
Adeni,
D.S.A., Abd-Aziz, S., Bujang, B. & Hassan, M.H. 2010. Review: Bioconversion
of sago residue into value added products. African Journal of Biotechnology 9(14):
2016-2021.
Aiyer, P.V. 2005. Amylases and
their applications. African Journal of Biotechnology 4(13):
1525-1529.
Altintas, M., Ulgen, K.O., Kirdar, B., Onsan, Z.I. & Oliver,
S.G. 2002. Improvement of ethanol production from starch
by recombinant yeast through manipulation of environmental factors. Enzyme
and Microbial Technology 31: 640-647.
Bujang, K.
& Ahmad, F.B. 2000. Country report of Malaysia. Production and utilization of sago starch in Malaysia. International
Sago Seminar. pp. 1-8.
Bujang, K.,
Apun, K. & Salleh, M.A. 1996. A study in the production
and bioconversion of sago waste. In Sago - The Future Source of Food
and Feed, edited by Jose, C. & Rasyad, A.
Indonesia: Riau University Press. pp. 195-201.
Cervero, J.M., Skovgaard, P.A., Felby, C., Sorensen, H.R. &
Jorgensen, H. 2010. Enzymatic hydrolysis and fermentation of palm
kernel press cake for production of bioethanol. Enzyme and Microbial
Technology 46: 177-184.
Chew, T.Y.
& Shim, Y.L. 1993. Management of sago processing wastes. In Waste
Management in Malaysia - Current Status and Prospects for Bioremediation,
edited by Yeoh, B.G., Chee, K.S., Phang, S.M., Isa, Z., Idris, A. &
Mohamed, M. Kuala Lumpur: Ministry of Science, Technology and the Environment.
Isci, A., Himmelsbach, J.N., Strohl, J., Pometto, A.L., Raman,
D.R. & Anex, R.P. 2008. Pilot-scale
fermentation of aqueous-ammonia-soaked switchgrass. Applied
Biochemistry and Biotechnology 157(3): 453-462.
Periyasamy,
S. 2009. Production of bioethanol from sugar molasses using Saccharomyces
cerevisiae. Modern Applied Science 3(8): 32-37.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. &
Templeton, D. 2005. Determination of ash in
biomass. http:// www.nrel.gov/docs/gen/fy08/42622.pdf.
Spindler,
D.D., Wyman, C.E. & Grohmann, K. 1991. The simultaneous
saccharification and fermentation of pretreated woody
crops to ethanol. Applied Biochemistry and Biotechnology 28
& 29: 773-786.
Undersander,
D., Mertens, D.R. & Thiex, N. 1993. Forage analyses procedures.
http://www.foragetesting.org/files/ LaboratoryProcedures.pdf.
Vincent, M. 2010. Sequential saccharification and fermentation of corn stover for the
production of fuel ethanol using wood-rot fungi, Saccharomyces cerevisiae and Escherichia coli K011. PhD Thesis. Iowa State University, Iowa,
US (unpublished).
Vincent, M., Pometto
III, A.L. & van Leeuwen, J. (Hans). 2014. Ethanol production via
simultaneous saccharification and fermentation of sodium hydroxide treated corn
stover using Phanerochaete chrysosporium and Gloeophyllum trabeum. Bioresource Technology 158: 1-6.
Vincent, M., Anthony, L.
& van Leeuwen, J. (Hans). 2011a. Evaluation of potential
fungal species for the in situ simultaneous saccharification and
fermentation (SSF) of cellulosic materials. Malaysian Journal of
Microbiology 7(3): 120-138.
Vincent, M., Anthony, L.
& van Leeuwen, J. (Hans). 2011b. Simultaneous saccharification and
fermentation of ground corn stover for the production of ethanol using Phanerocheate
chrysoporium, Gloeophyllum trabeum, Saccharomyces cerevisiae and Escherichia coli K011. Journal of Microbiology and Biotechnology 21(7):
703-710.
Vogel, K.P., Pedersen,
J.F., Masterson, S.D. & Toy, J.J. 1999. Evaluation of a filter bag system
for NDF, ADF and IVDMD forage analysis. Crop Science 39: 276-279.
Wu, Z. & Lee, Y.Y.
1998. Non-isothermal simultaneous saccharification and
fermentation for direct conversion of lignocellulosic biomass to ethanol. Applied Biochemistry and Biotechnology 70-72: 479-492.
Yamashita,
Y., Sasaki, C. & Nakamura, Y. 2010. Development of
efficient system for ethanol production from paper sludge pretreated by ball
milling and phosphoric acid. Carbohydrate and Polymer 79: 250-
254.
Yang, S., Land, M.L.,
Klingeman, D.M., Pelletier, D.A., Lu, T.S., Martin, S.T., Guo, H., Smith, J.C.
& Brown, S.D. 2010. Paradigm for industrial strain improvement identifies
sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces
cerevisiae. Applied Biological Sciences 107(23): 10395-10400.
Zakaria,
S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization
of residue from EFB and kenaf core fibres in the liquefaction process. Sains
Malaysiana 43(3): 429-435.
Zakaria,
S., Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of novolak-type resin
made from liquefaction of oil palm empty fruit bunch (EFB) fibres using
sulfuric acid as a catalyst. Bioresources 8(4): 5884-5894.
*Corresponding author; email: vmicky@frst.unimas.my