Sains Malaysiana 44(7)(2015): 1033–1039
A
Comparison between Bayesian and Maximum Likelihood Estimations in
Estimating
Finite
Mixture Model for Financial Data
(Perbandingan antara
Bayesian dan Anggaran Kebolehjadian Maksimum dalam Menganggar
Model Campuran Terhingga
untuk Data Kewangan)
SEUK-YEN
PHOONG*
& MOHD TAHIR ISMAIL
School of Mathematical
Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
Received: 22 May
2013/Accepted: 5 February 2015
ABSTRACT
Over the years, maximum likelihood
estimation and Bayesian method became popular statistical tools
in which applied to fit finite mixture model. These trends begin
with the advent of computer technology during the last decades.
Moreover, the asymptotic properties for both statistical methods
also act as one of the main reasons that boost the popularity of
the methods. The difference between these two approaches is that
the parameters for maximum likelihood estimation are fixed, but
unknown meanwhile the parameters for Bayesian method act as random
variables with known prior distributions. In the present paper,
both the maximum likelihood estimation and Bayesian method are applied
to investigate the relationship between exchange rate and the rubber
price for Malaysia, Thailand, Philippines and Indonesia. In order
to identify the most plausible method between Bayesian method and
maximum likelihood estimation of time series data, Akaike Information
Criterion and Bayesian Information Criterion are adopted in this
paper. The result depicts that the Bayesian method performs better
than maximum likelihood estimation on financial data.
Keywords: Akaike information
criterion; Bayesian information criterion; Bayesian method; finite
mixture model; maximum likelihood estimation
ABSTRAK
Sejak beberapa tahun, anggaran
kebolehjadian maksimum dan kaedah Bayesian menjadi alat statistik
popular yang sesuai digunakan untuk model campuran terhingga. Trend
ini bermula dengan adanya teknologi komputer sejak sedekad yang
lalu. Selain itu, sifat asimptot bagi kedua-dua kaedah statistik
juga menjadi salah satu daripada faktor utama dalam meningkatkan
populariti kaedah ini. Perbezaan antara kedua-dua kaedah ini adalah
parameter untuk anggaran kebolehjadian maksimum adalah tetap tetapi
tidak diketahui manakala parameter bagi kaedah Bayesian bertindak
sebagai pemboleh ubah rawak dengan taburan yang dikenali sebelum
ini. Dalam kertas ini, kedua-dua anggaran kebolehjadian maksimum
dan kaedah Bayesian digunakan untuk mengkaji hubungan antara kadar
pertukaran wang dan harga getah bagi Malaysia, Thailand, Filipina
dan Indonesia. Untuk mengenal pasti kaedah yang paling munasabah
antara kaedah Bayesian dan anggaran kebolehjadian maksimum untuk
data siri masa, kriteria maklumat Akaike dan kriteria maklumat Bayesian
diguna pakai dalam kertas ini. Kesimpulannya, keputusan menunjukkan
bahawa kaedah Bayesian mempunyai prestasi yang lebih baik daripada
anggaran kebolehjadian maksimum dalam menganalisis data kewangan.
Kata kunci: Anggaran kebolehjadian maksimum; kaedah Bayesian; kriteria
maklumat Akaike; kriteria maklumat Bayesian; model campuran terhingga
REFERENCES
Avdis, E. &
Wachter, J.A. 2013. Maximum likelihood estimation of the equity
premium. Working paper.
Burger, K., Smith,
H. & Vogelvang, B. 2002. Exchange rates and natural rubber prices,
the effect of the Asian crisis. Spain: 2002 International Congress
Zaragoza, no. 24958.
Cipriani, M., Costantini,
R. & Guarino, A. 2012. A Bayesian approach to experimental analysis:
Trading in a laboratory financial market. Review of Economic
Design 16(2): 175-191.
Coles, S.G., Sisson,
S.A. & Pericchi, L.R. 2005. A case for a reassessment of the
risks of extreme hydrological hazards in the Caribbean. SERRA
20: 296-306.
Duan, J.C. &
Simonato, J.G. 2001. Maximum likelihood estimation of deposit insurance
value with interest rate risk. Journal of Empirical Finance 9:
109-132.
Durham, G.B. &
Gallant, A.R. 2002. Numerical techniques for maximum likelihood
estimation of continuous-time diffusion processes. Journal of
Business and Economic Statistics 20(3): 297-316.
Feng, X.X. &
Xie, D.J. 2012. Bayesian estimation of CIR model. Journal of
Data Science 10: 271-280.
Fisher, R.A. 1922.
On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society of London A 222: 309-368.
Hosmer, D.W. 1973.
A comparison of iterative maximum likelihood estimates of the parameters
of a mixture of two normal distributions under three different types
of sample. Biometrics 29: 761-770.
Jacquier, E. &
Polson, N.G. 2012. Asset allocation in finance: A Bayesian perspective.
In Hierarchinal Models and MCMC: A tribute to Adrian Smith,
edited by Dellaportas, D., Polson, N. & Stephen, G. Oxford:
Oxford University Press.
Johnson, P.H. Jr.,
Qi, Y.X. & Chueh, Y.C. 2011. Bias-corrected maximum likelihood
estimation in actuarial science. Proceedings of 46th Actuarial
Research Conference.
Kladivko, K. 2007.
Maximum likelihood estimation of the Cox-Ingersoll-Ross process:
The Matlab implementation. Technical Computing Prague.
Laplace, P.S. 1986.
Memoir on the probability of the causes of events. Statistical
Science 1 3: 364-378.
Lepage, G. 2012.
Maximum likelihood estimation for conditionally heteroscedastic
models when the innovation process is in the domain of attraction
of a stable law. Parallel Meetings, 27-31
August 2012, Malaga, Spain.
Love, K.R., Ye,
K.Y., Smith, E.P. & Prisley, S.P. 2007. Error models in geographic
information systems vector data using Bayesian methods. International
Journal of Geographical Information Science technical report No.
07-1.
Martina, M.L.V.,
Todini, E. & Libralon, A. 2008. Rainfall thresholds for flood
warning systems: A Bayesian decision approach. Water Science
and Technology Library 63(3): 203-227.
McLachlan, G.J.
& Peel, D. 2000. Finite Mixture Models. New York: John
Wiley & Sons.
Monahan,
J.F. 1983. Fully Bayesian analysis of ARMA time series models. Journal
of Econometrics 21: 307-331.
Newcomb, S. 1886. A generalized theory of the combination of
observations so as to obtain the best result. American Journal
of Mathematics 8: 343-366.
Newton, M.A., Kenziorski,
C.M., Richmond, C.S., Blattner, F.R. & Tsui, K.W. 2001. On differential
variability of expression ratios: Improving statistical inference
about gene expression changes from microarray data. Journal of
Computational Biology 8: 37-52.
Olson, D.A., Junker,
N.W. & Korty, B. 1995. Evaluation of 33 years of quantitative
precipitation forecasting at the NMC. Weather Forecasting 10:
498-511.
Pandey, B.N., Dwivedi,
N. & Bandyopadhyay, P. 2011. Comparison between Bayesian and
maximum likelihood estimation of scale parameter in Weibull distribution
with known shape under linex loss function. Journal of Scientific
Research 55: 163-172.
Safaa Nasir &
Nashaat Al-Anber. 2012. A comparison of the Bayesian and other methods
for estimation of reliability function for Burr-XII distribution.
Journal of Mathematics and Statistics 8(1): 42-48.
Titterington, D.M.,
Smith, A.F.M. & Markov, U.E. 1985. Statistical Analysis of
Finite Mixture Distributions. New York: Wiley.
*Corresponding author; email: yen_phoong@hotmail.com
|