| Sains Malaysiana 44(7)(2015): 1033–1039    A 
              Comparison between Bayesian and Maximum Likelihood Estimations in 
              Estimating  Finite 
              Mixture Model for Financial Data (Perbandingan antara 
              Bayesian dan Anggaran Kebolehjadian Maksimum dalam Menganggar  Model Campuran Terhingga 
              untuk Data Kewangan)   SEUK-YEN 
              PHOONG* 
              & MOHD TAHIR ISMAIL   School of Mathematical 
              Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia   Received: 22 May 
              2013/Accepted: 5 February 2015   ABSTRACT Over the years, maximum likelihood 
              estimation and Bayesian method became popular statistical tools 
              in which applied to fit finite mixture model. These trends begin 
              with the advent of computer technology during the last decades. 
              Moreover, the asymptotic properties for both statistical methods 
              also act as one of the main reasons that boost the popularity of 
              the methods. The difference between these two approaches is that 
              the parameters for maximum likelihood estimation are fixed, but 
              unknown meanwhile the parameters for Bayesian method act as random 
              variables with known prior distributions. In the present paper, 
              both the maximum likelihood estimation and Bayesian method are applied 
              to investigate the relationship between exchange rate and the rubber 
              price for Malaysia, Thailand, Philippines and Indonesia. In order 
              to identify the most plausible method between Bayesian method and 
              maximum likelihood estimation of time series data, Akaike Information 
              Criterion and Bayesian Information Criterion are adopted in this 
              paper. The result depicts that the Bayesian method performs better 
              than maximum likelihood estimation on financial data.   Keywords: Akaike information 
              criterion; Bayesian information criterion; Bayesian method; finite 
              mixture model; maximum likelihood estimation   ABSTRAK Sejak beberapa tahun, anggaran 
              kebolehjadian maksimum dan kaedah Bayesian menjadi alat statistik 
              popular yang sesuai digunakan untuk model campuran terhingga. Trend 
              ini bermula dengan adanya teknologi komputer sejak sedekad yang 
              lalu. Selain itu, sifat asimptot bagi kedua-dua kaedah statistik 
              juga menjadi salah satu daripada faktor utama dalam meningkatkan 
              populariti kaedah ini. Perbezaan antara kedua-dua kaedah ini adalah 
              parameter untuk anggaran kebolehjadian maksimum adalah tetap tetapi 
              tidak diketahui manakala parameter bagi kaedah Bayesian bertindak 
              sebagai pemboleh ubah rawak dengan taburan yang dikenali sebelum 
              ini. Dalam kertas ini, kedua-dua anggaran kebolehjadian maksimum 
              dan kaedah Bayesian digunakan untuk mengkaji hubungan antara kadar 
              pertukaran wang dan harga getah bagi Malaysia, Thailand, Filipina 
              dan Indonesia. Untuk mengenal pasti kaedah yang paling munasabah 
              antara kaedah Bayesian dan anggaran kebolehjadian maksimum untuk 
              data siri masa, kriteria maklumat Akaike dan kriteria maklumat Bayesian 
              diguna pakai dalam kertas ini. Kesimpulannya, keputusan menunjukkan 
              bahawa kaedah Bayesian mempunyai prestasi yang lebih baik daripada 
              anggaran kebolehjadian maksimum dalam menganalisis data kewangan. 
                 Kata kunci: Anggaran kebolehjadian maksimum; kaedah Bayesian; kriteria 
              maklumat Akaike; kriteria maklumat Bayesian; model campuran terhingga REFERENCES 
               Avdis, E. & 
              Wachter, J.A. 2013. Maximum likelihood estimation of the equity 
              premium. Working paper.  Burger, K., Smith, 
              H. & Vogelvang, B. 2002. Exchange rates and natural rubber prices, 
              the effect of the Asian crisis. Spain: 2002 International Congress 
              Zaragoza, no. 24958.  Cipriani, M., Costantini, 
              R. & Guarino, A. 2012. A Bayesian approach to experimental analysis: 
              Trading in a laboratory financial market. Review of Economic 
              Design 16(2): 175-191.  Coles, S.G., Sisson, 
              S.A. & Pericchi, L.R. 2005. A case for a reassessment of the 
              risks of extreme hydrological hazards in the Caribbean. SERRA 
              20: 296-306.  Duan, J.C. & 
              Simonato, J.G. 2001. Maximum likelihood estimation of deposit insurance 
              value with interest rate risk. Journal of Empirical Finance 9: 
              109-132.  Durham, G.B. & 
              Gallant, A.R. 2002. Numerical techniques for maximum likelihood 
              estimation of continuous-time diffusion processes. Journal of 
              Business and Economic Statistics 20(3): 297-316.  Feng, X.X. & 
              Xie, D.J. 2012. Bayesian estimation of CIR model. Journal of 
              Data Science 10: 271-280.  Fisher, R.A. 1922. 
              On the mathematical foundations of theoretical statistics. Philosophical 
              Transactions of the Royal Society of London A 222: 309-368. 
               Hosmer, D.W. 1973. 
              A comparison of iterative maximum likelihood estimates of the parameters 
              of a mixture of two normal distributions under three different types 
              of sample. Biometrics 29: 761-770.  Jacquier, E. & 
              Polson, N.G. 2012. Asset allocation in finance: A Bayesian perspective. 
              In Hierarchinal Models and MCMC: A tribute to Adrian Smith, 
              edited by Dellaportas, D., Polson, N. & Stephen, G. Oxford: 
              Oxford University Press.  Johnson, P.H. Jr., 
              Qi, Y.X. & Chueh, Y.C. 2011. Bias-corrected maximum likelihood 
              estimation in actuarial science. Proceedings of 46th Actuarial 
              Research Conference.  Kladivko, K. 2007. 
              Maximum likelihood estimation of the Cox-Ingersoll-Ross process: 
              The Matlab implementation. Technical Computing Prague.  Laplace, P.S. 1986. 
              Memoir on the probability of the causes of events. Statistical 
              Science 1 3: 364-378.  Lepage, G. 2012. 
              Maximum likelihood estimation for conditionally heteroscedastic 
              models when the innovation process is in the domain of attraction 
              of a stable law. Parallel Meetings, 27-31 
              August 2012, Malaga, Spain.  Love, K.R., Ye, 
              K.Y., Smith, E.P. & Prisley, S.P. 2007. Error models in geographic 
              information systems vector data using Bayesian methods. International 
              Journal of Geographical Information Science technical report No. 
              07-1.  Martina, M.L.V., 
              Todini, E. & Libralon, A. 2008. Rainfall thresholds for flood 
              warning systems: A Bayesian decision approach. Water Science 
              and Technology Library 63(3): 203-227.  McLachlan, G.J. 
              & Peel, D. 2000. Finite Mixture Models. New York: John 
              Wiley & Sons.  Monahan, 
              J.F. 1983. Fully Bayesian analysis of ARMA time series models. Journal 
              of Econometrics 21: 307-331. Newcomb, S. 1886. A generalized theory of the combination of 
              observations so as to obtain the best result. American Journal 
              of Mathematics 8: 343-366.  Newton, M.A., Kenziorski, 
              C.M., Richmond, C.S., Blattner, F.R. & Tsui, K.W. 2001. On differential 
              variability of expression ratios: Improving statistical inference 
              about gene expression changes from microarray data. Journal of 
              Computational Biology 8: 37-52.  Olson, D.A., Junker, 
              N.W. & Korty, B. 1995. Evaluation of 33 years of quantitative 
              precipitation forecasting at the NMC. Weather Forecasting 10: 
              498-511.  Pandey, B.N., Dwivedi, 
              N. & Bandyopadhyay, P. 2011. Comparison between Bayesian and 
              maximum likelihood estimation of scale parameter in Weibull distribution 
              with known shape under linex loss function. Journal of Scientific 
              Research 55: 163-172.  Safaa Nasir & 
              Nashaat Al-Anber. 2012. A comparison of the Bayesian and other methods 
              for estimation of reliability function for Burr-XII distribution. 
              Journal of Mathematics and Statistics 8(1): 42-48.  Titterington, D.M., 
              Smith, A.F.M. & Markov, U.E. 1985. Statistical Analysis of 
              Finite Mixture Distributions. New York: Wiley.    *Corresponding author; email: yen_phoong@hotmail.com 
               
 
 |