Sains Malaysiana 44(7)(2015): 1053–1059

 

Feedforwad Backpropagation, Genetic Algorithm Approaches for Predicting Reference Evapotranspiration

(Perambatanbalik Maklumbas ke Depan, Pendekatan Algoritma Genetik untuk Meramalkan Rujukan Penyejatpeluhan)

 

SHAFIKA SULTAN ABDULLAH1,4*, M.A. MALEK1, NAMIQ SULTAN ABDULLAH2

& A. MUSTAPHA3

 

1Department of Civil Engineering, Universiti Tenaga Nasional, Putrajaya Campus

Jalan IKRAM-UNITEN, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Department of Electrical and Computer Engineering, Zakho Street 38, 1006 AJ Duhok Duhok Governorate - Kurdistan Region - Iraq P.O Box 78

 

3Faculty of Computer Science and Information Technology, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia

 

4Akre Technical Institute, Dohuk Polytechnic University, 61 Zakho Road, 1006 Mazi Qr Duhok

Kurdistan-Iraq

 

Received: 20 November 2013/Accepted: 11 May 2015

 

ABSTRACT

 

Water scarcity is a global concern, as the demand for water is increasing tremendously and poor management of water resources will accelerates dramatically the depletion of available water. The precise prediction of evapotranspiration (ET), that consumes almost 100% of the supplied irrigation water, is one of the goals that should be adopted in order to avoid more squandering of water especially in arid and semiarid regions. The capabilities of feedforward backpropagation neural networks (FFBP) in predicting reference evapotranspiration (ET0) are evaluated in this paper in comparison with the empirical FAO Penman-Monteith (P-M) equation, later a model of FFBP+Genetic Algorithm (GA) is implemented for the same evaluation purpose. The study location is the main station in Iraq, namely Baghdad Station. Records of weather variables from the related meteorological station, including monthly mean records of maximum air temperature (Tmax), minimum air temperature (Tmin), sunshine hours (Rn), relative humidity (Rh) and wind speed (U2), from the related meteorological station are used in the prediction of ET0 values. The performance of both simulation models were evaluated using statistical coefficients such as the root of mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The results of both models are promising, however the hybrid model shows higher efficiency in predicting ET0 and could be recommended for modeling of ET0 in arid and semiarid regions.

 

Keywords: Evapotranspiration; genetic algorithm; neural networks; Penman-Monteith

 

ABSTRAK

Kekurangan air adalah satu kebimbangan global, kerana permintaan bekalan air semakin bertambah dan pengurusan sumber air yang lemah akan secara dramatik mempercepatkan pengurangan air sedia ada. Jangkaan tepat untuk penyejatpeluhan (ET), yang menggunakan hampir 100% daripada bekalan air pengairan merupakan salah satu matlamat yang perlu diterima pakai bagi mengelakkan lebih banyak pembaziran air terutamanya di kawasan-kawasan gersang dan separa gersang. Keupayaan rangkaian neural perambatan balik maklumbalas ke depan (FFBP) untuk meramalkan rujukan penyejatpeluhan (ET0) dinilai dalam kertas ini berbanding dengan persamaan empirikal FAO Penman-Monteith (P-M), kemudian model FFBP + genetik algoritma (GA) dijalankan bagi tujuan penilaian yang sama. Lokasi kajian ialah stesen utama di Iraq, iaitu stesen Baghdad. Rekod pemboleh ubah cuaca dari stesen kajicuaca berkaitan, termasuk rekod bulanan purata suhu udara yang maksimum (Tmax), suhu udara minimum (Tmin), jam cahaya matahari (Rn), kelembapan relatif (Rh) dan kelajuan angin (U2) dari stesen kajicuaca berkaitan digunakan dalam jangkaan untuk nilai ET0. Prestasi kedua-dua model simulasi dianalisis menggunakan pekali statistik seperti punca min ralat kuasa dua (RMSE), min ralat mutlak (MAE) dan pekali penentuan (R2). Keputusan kedua-dua model adalah menggalakkan. Walau bagaimanapun model hibrid menunjukkan kecekapan yang lebih tinggi dalam meramalkan ET0 dan boleh disyorkan untuk pemodelan ET0 di kawasan gersang dan separa gersang.

 

Kata kunci: Algoritma genetik; Penman-Monteith; penyejatpeluhan; rangkaian neural

 

REFERENCES

 

Allen, R., Pereira, L., Raes, D. & Smith, M. 1998. Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements - FAO Irrigation and Drainage Paper 56. Rome, Italy.

Azzini, A. 2005. A New Genetic Approach for Neural Network Design and Optimization. Ph.D. Thesis, Universita Degli Studi Di Milano, Italy (unpublished) http://www.dti.unimi. it/azzini/wwwmat/TesiAzziniAntonia.pdf.

Badde, D.S., Gupta, A.k. & Patki, V.K. 2013. Cascade and feed forward back propagation artificial neural network models for prediction of compressive strength of ready mix concrete. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 3: 1-6.

Basheer, I.A. & Hajmeer, M. 2000. Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods 43(1): 3-31.

Bishop, C.M. 1994. Neural networks and their applications. Rev. Sci. Instrum. 65(6): 1803-1832.

Demuth, H., Beale, M. & Hagan, M. 2009. Neural Network Toolbox TM 6 User ’ S Guide. The MathWorks, Inc.

Draper, N.R. & Smith, H. 1998. Applied Regression Analysis. New Jersey: John Wiley & Sons, Inc.

Droogers, P. & Allen, R.G. 2002. Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems 16(1): 33-45.

El-Baroudy, I., Elshorbagy, A., Carey, S.K., Giustolisi, O. & Savic, D. 2010. Comparison of three data-driven techniques in modelling the evapotranspiration process. Journal of Hydroinformatics 12(4): 365-379.

Gautam, M.R., Watanabe, K. & Saegusa, H. 2000. Runoff analysis in humid forest catchment with artificial neural network. Journal of Hydrology 235(1-2): 117-136.

Huang, G., Zhu, Q. & Siew, C. 2006. Extreme learning machine: A new learning scheme of feedforward neural networks. Neurocomputing 70: 489-501.

Iraqi Meteorological Organization and Seismology. 2014. Ministry of Transportation. Baghdad, Iraq: Ministry of Transportation. http://meteoseism.gov.iq/en/index. php?name=Pages&op=page&pid=74.

Khoshhal, J. & Mokarram, M. 2012. Model for prediction of evapotranspiration using MLP neural network. International Journal of Environmental Sciences 3(3): 1000-1009.

Kiranyaz, S., Ince, T., Yildirim, A. & Gabbouj, M. 2009. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Neural Networks : The Official Journal of the International Neural Network Society 22(10): 1448-1462.

Kisi, Ö. 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes 22(14): 2449-2460.

Kisi, Ö. & Öztürk, Ö. 2008. Adaptive neurofuzzy computing technique for evapotranspiration estimation. Journal of Irrigation and Drainage Engineering 133(4): 368-379.

Kisi, O. 2006. Generalized regression neural networks for evapotranspiration modelling. Journal of Hydrological Sciences 51(12): 1092-1105.

Kumar, M., Raghuwanshi, N.S. & Singh, R. 2010. Artificial neural networks approach in evapotranspiration modeling: A review. Irrigation Science 29(1): 11-25.

Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W. & Pruitt, W.O. 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering 128(4): 224-233.

Landeras, G., Ortiz-Barredo, A. & López, J.J. 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque country (Northern Spain). Agricultural Water Management 95(5): 553-565.

Rumelhart, E. & McClelland, L. 1986. Parallel Distributed Processing. Cambridge: The MIT Press.

Shiri, J., Kişi, Ö., Landeras, G., López, J.J., Amir Hossein Nazemi & L.C.P.M. Stuyt. 2012. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque country (Northern Spain). Journal of Hydrology 414-415 (1): 302-316.

Tabari, H. & Hosseinzadeh Talaee, P. 2012. Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Computing and Applications 23(2): 341-348.

Wang, G., Zhao, Y. & Wang, D. 2008. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing 72(1-3): 262-268.

Warner, B. & Misra, M. 1996. Understanding neural networks as statistical tools. The American Statistician 50(4): 284-293.

Zurada, J.M. 1992. Introduction to Artificial Neural Systems. California: West Publishing Company.

 

 

*Corresponding author; email: sha_akre@yahoo.com

 

 

 

previous