Sains Malaysiana 44(7)(2015): 1067–1075

 

A Study on the S2-EWMA Chart for Monitoring the Process Variance based on the MRL Performance

(Suatu Kajian Carta S2-EWMA bagi Memantau Varians Proses Berdasarkan Prestasi MRL)

 

 

TEH SIN YIN1*, KHOO MICHAEL BOON CHONG2, ONG KER HSIN1, SOH KENG LIN1 & TEOH WEI LIN2,3

 

1School of Management, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

2School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang

Malaysia

 

3Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak Darul Ridzuan, Malaysia

 

Received: 19 April 2013/Accepted: 5 February 2015

 

ABSTRACT

The existing optimal design of the fixed sampling interval S2-EWMA control chart to monitor the sample variance of a process is based on the average run length (ARL) criterion. Since the shape of the run length distribution changes with the magnitude of the shift in the variance, the median run length (MRL) gives a more meaningful explanation about the in-control and out-of-control performances of a control chart. This paper proposes the optimal design of the S2-EWMA chart, based on the MRL. The Markov chain technique is employed to compute the MRLs. The performances of the S2-EWMA chart, double sampling (DS) S2 chart and S chart are evaluated and compared. The MRL results indicated that the S2-EWMA chart gives better performance for detecting small and moderate variance shifts, while maintaining almost the same sensitivity as the DS S2 and S charts toward large variance shifts, especially when the sample size increases.

 

Keywords: Exponentially weighted moving average (EWMA); Markov chain; median run length (MRL); sample variance

 

ABSTRAK

Reka bentuk optimum carta kawalan EWMA-S2 selang pensampelan tetap yang digunakan untuk memantau proses sampel varians adalah berdasarkan kriteria panjang larian purata (ARL). Oleh sebab bentuk taburan panjang larian berubah dengan magnitud anjakan dalam varians, maka panjang larian median (MRL) memberi penjelasan yang lebih bermakna tentang prestasi terkawal dan luar kawalan carta kawalan. Kertas kerja ini mencadangkan reka bentuk optimum untuk carta EWMA-S2 berdasarkan MRL. Teknik rantai Markov digunakan untuk mengira MRL. Prestasi carta-carta EWMA-S2, DS S2 dan S telah dinilai dan dibandingkan. Keputusan MRL menunjukkan bahawa carta EWMA-S2 memberikan prestasi yang lebih baik untuk mengesan anjakan varians yang kecil dan sederhana di samping mengekalkan kepekaan yang hampir sama dengan carta-carta DS S2 dan S terhadap anjakan varians yang besar, terutamanya apabila saiz sampel meningkat.

 

Kata kunci: Panjang larian median; purata bergerak berpemberat eksponen (EWMA); rantai Markov; varians sampel

REFERENCES

Brook, D. & Evans, D.A. 1972. An approach to the probability distribution of CUSUM run length. Biometrika 59(3): 539- 549.

Castagliola, P. 2005. A new S2-EWMA control chart for monitoring the process variance. Quality and Reliability Engineering International 21: 781-794.

Castagliola, P., Celano, G., Fichera, S. & Nunnari, V. 2008. A variable sample size S2-EWMA control chart for monitoring the process variance. International Journal of Reliability, Quality and Safety Engineering 15(3): 181-201.

Castagliola, P., Celano, G., Fichera, S. & Giuffrida, F. 2007. A variable sampling interval S2-EWMA control chart for monitoring the process variance. International Journal of Technology Management 37(1/2): 125-146.

Chakraborti, S. 2007. Run length distribution and percentiles: The Shewhart X chart with unknown parameters. Quality Engineering 19(2): 119-127.

Chang, T.C. & Gan, F.F. 1994. Optimal designs of one-sided EWMA charts for monitoring a process variance. Journal of Statistical Computation and Simulation 49(1-2): 33-48.

Crowder, S.V. & Hamilton, M.D. 1992. An EWMA for monitoring a process standard deviation. Journal of Quality Technology 24(1): 12-21.

Di Bucchianico, A.A.D., Mooiweer, G.D. & Moonen, E.J.G. 2005. Monitoring infrequent failures of high-volume production processes. Quality and Reliability Engineering International 21(5): 521-528.

Eyvazian, M., Jalali Naini, S.G. & Vaghefi, A. 2008. Monitoring process variability using exponentially weighted moving sample variance control charts. International Journal of Advanced Manufacturing Technology 39(3/4): 261-270.

Gan, F.F. 1994. An optimal design of cumulative sum control chart based on median run length. Communications in Statistics- Simulation and Computation 23(2): 485-503.

Gan, F.F. 1993a. An optimal design of EWMA control charts based on median run length. Journal of Statistical Computation and Simulation 45(3&4): 169-184.

Gan, F.F. 1993b. The run length distribution of a cumulative sum control chart. Journal of Quality Technology 25(3): 205-215.

Gan, F.F. 1992. An Optimal Design of Cumulative Sum Control Charts based on Median Run Length. Research Report No. 536, Lee Kong Chian Center for Mathematical Research, Singapore.

Graham, M.A., Chakraborti, S. & Human, S.W. 2011. A nonparametric exponentially weighted moving average signed-rank chart for monitoring location. Computational Statistics & Data Analysis 55(8): 2490-2503.

He, D. & Grigoryan, A. 2003. An improved double sampling S chart. International Journal of Production Research 41(12): 2663-2679.

Khoo, M.B.C. 2004. S2 control chart based on double sampling. International Journal of Pure and Applied Mathematics 13(2): 249-258.

Li, S.Y., Tang, L.C. & Ng, S.H. 2010. Nonparametric CUSUM and EWMA control charts for detecting mean shifts. Journal of Quality Technology 42(2): 209-226.

Lucas, J.M. & Saccucci, M.S. 1990. Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics 32(1): 1-12.

Montgomery, D.C. 2009. Statistical Quality Control: A Modern Introduction. 6th ed. New Jersey: John Wiley & Sons (Asia) Pte. Ltd.

Radson, D. & Boyd, A.H. 2005. Graphical representation of run length distributions. Quality Engineering 17(2): 301-308.

Razmy, A.M. & Peiris, T.S.G. 2013. Design of exponentially weighted moving average chart for monitoring standardized process variance. International Journal of Engineering and Technology 13(5): 74-78.

Roberts, S.W. 1959. Control charts tests based on geometric moving averages. Technometrics 1: 239-250.

Simões, B.F.T., Epprecht, E.K. & Costa, A.F.B. 2010. Performance comparisons of EWMA control chart schemes. Quality Technology & Quantitative Management 7(3): 249- 261.

Shu, L.J. 2008. An adaptive exponentially weighted moving average control chart for monitoring process variances. Journal of Statistical Computation and Simulation 78(4): 367-384.

Teoh, W.L. & Khoo, M.B.C. 2012. Optimal design of the double sampling chart based on median run length. International Journal of Chemical Engineering and Applications 3(5): 303- 306.

Thaga, K. 2003. Contributions to statistical process control tools. PhD. Thesis, University of Manitoba, Canada (unpublished).

Yang, S.F., Lin, J.S. & Cheng, S.W. 2011. A new nonparametric EWMA sign control chart. Expert Systems with Applications 38(5): 6239-6243.

 

 

*Corresponding author; email: tehsyin@usm.my

 

 

 

 

previous