Sains Malaysiana 44(8)(2015): 1085–1093
Estimating Biomass in Logged Tropical Forest Using L-Band
SAR (PALSAR) Data and GIS
(Penganggaran
Biojisim dalam Hutan Tropika telah Diteroka menggunakan Data SAR
Berjalur L (PALSAR) dan GIS)
HAMDAN
OMAR1*,
MOHD
HASMADI
ISMAIL2,
KHALI
AZIZ
HAMZAH1,
HELMI ZULHAIDI MOHD
SHAFRI2
& NORIZAH KAMARUDIN2
1Forest Research Institute
Malaysia, 52109 FRIM, Kepong, Selangor Darul Ehsan, Malaysia
2Universiti Putra Malaysia,
43400 Serdang, Selangor Darul Ehsan, Malaysia
Received: 28 June 2014/Accepted:
5 March 2015
ABSTRACT
The use of remote sensing
imagery, to some extends geographic information system (GIS),
have been identified as the most recent and effective technologies
to assess forest biomass. Depending on the approaches and methods
employed, estimating biomass by using these technologies sometimes
can lead to uncertainties. The study was conducted to investigate
appropriate methods for estimating aboveground biomass (AGB) by using synthetic aperture radar
(SAR)
data. A total of 60187 ha in Dungun Timber Complex (DTC)
were selected as the study area. Thirty seven sample plots, measuring
30×30 m were established in early 2012 covering both natural and
logged forests. Phase Array Type L-Band SAR (Palsar) images that were acquired
in 2010 were used as primary remote sensing input and shapefile
polygons comprised logging records was used as supporting information.
By using these data, two estimation methods, which were ‘stratify
and multiply’ (SM)
and ‘direct remote sensing’ (DR) have been adopted and the
results were compared. The estimated total AGB were
about 20.1 and 22.3 million Mg, from SM and DR methods,
respectively. The study found that the images that incorporated
texture measures produced more accurate estimates as compared to
the images without texture measures. The study suggests that SM method
still a viable and reliable technique for quick assessment of AGB in
a large area. The DR method is also relevant provided that
an appropriate type and processing techniques of SAR data
are utilized.
Keywords: Biomass estimate;
GIS; L-band SAR; tropical forest
ABSTRAK
Penggunaan citra penderiaan
jauh dan seiringan dengan sistem maklumat geografi (GIS),
telah dikenal pasti sebagai teknologi terkini yang paling efektif
untuk penilaian biojisim hutan. Penganggaran biojisim menggunakan
teknologi ini bergantung kepada pendekatan dan kaedah yang diguna
pakai kerana kadangkala ia boleh membawa kepada kesilapan. Kajian
ini dijalankan untuk menentukan kaedah yang sesuai untuk menganggar
biojisim atas tanah (BAT)
menggunakan data bukaan radar sintetik (SAR). Sejumlah 60187 ha di dalam
kawasan Kompleks Kayu-Kayan Dungun (DTC)
telah dipilih sebagai kawasan kajian. Tiga puluh tujuh plot sampel
berukuran 30×30 m telah disediakan di dalam kawasan kajian pada
awal tahun 2012 merangkumi kedua-dua hutan asli dan hutan yang telah
dibalak. Fasa tatasusunan jenis SAR berjalur L (Palsar) merupakan data penderiaan jauh yang
dicerap pada tahun 2010 telah digunakan sebagai input utama, manakala
poligon yang mengandungi rekod pembalakan telah digunakan sebagai
maklumat sokongan. Dengan menggunakan data-data tersebut, dua kaedah
penganggaran iaitu ‘mengelas dan mendarab’ (SM) dan juga ‘penderiaan jauh langsung’
(DR) telah diguna pakai dan hasil daripada kedua-duanya dibandingkan.
Kajian menganggarkan BAT yang masing-masing 20.1 dan
22.3 juta Mg dijalankan melalui kaedah SM dan DR.
Kajian juga mendapati bahawa imej yang telah menggunakan ukuran
tekstur menghasilkan anggaran yang lebih tepat berbanding imej tanpa
ukuran tekstur. Kajian ini menyarankan bahawa kaedah SM masih relevan untuk penilaian
segera AGB bagi kawasan yang luas. Kaedah DR
juga relevan dengan syarat teknik pemprosesan data
SAR yang
sesuai digunakan.
Kata kunci: Anggaran biojisim; GIS;
hutan tropika; SAR berjalur
L
REFERENCES
Abdul Rashid, A.M., Shamsudin,
I., Ismail, P. & Fletcher, S.C. 2009. The Role of FRIM in Addressing
Climate-Change Issues. Research Pamphlet No. 128, Forest
Research Institute Malaysia, Kepong.
Angelsen, A., Brown,
S., Loisel, C., Peskett, C., Streck, C. & Zarin, D. 2009. Reducing
emission from deforestation and degradation (REDD): An options assessment
report. A report prepared for the government of Norway. Meridian
Institute. p. 100.
Asner, G.P. 2001. Cloud
cover in Landsat observations of the Brazilian Amazon. International
Journal of Remote Sensing 22: 3855-3862.
Franklin, S.E., Hall,
R.J., Moskal, L.M., Maudie, A.J. & Lavigne, M.B. 2000. Incorporating
texture into classification of forest species composition from airborne
multispectral images. International Journal of Remote Sensing
21(1): 61-79.
Gibbs, H.K., Brown, S.,
O’Niles, J. & Foley, J.A. 2007. Monitoring and estimating tropical
forest carbon stocks: Making REDD a reality. Environmental Research
Letter 2: 1-13.
Goetz, S.J., Baccini,
A., Laporte, N.T., Johns, T., Walker, W., Kellndorfer, J., Houghton,
R.A. & Sun, M. 2009. Mapping and monitoring carbon stocks with
satellite observations: A comparison of methods. Carbon Balance
and Management 4(2): 1-7.
Hamdan, O., Khali Aziz,
H. & Abd Rahman, K. 2011. Remotely sensed L-Band SAR data for
tropical forest biomass estimation. Journal of Tropical Forest
Science 23(3): 318- 327.
Jong, W., Chokkalingam,
U., Smith, J. & Sabogal, C. 2001. Tropical secondary forests
in Asia: Introduction and synthesis. Journal of Tropical Forest
Science 13(4): 563-576.
Kandaswamy, U., Adjeroh,
D.A. & Lee, M.C. 2005. Efficient texture analysis of SAR imagery.
IEEE Transaction on Geosciences and Remote Sensing 43(9):
2075-2083.
Kato, R., Tadaki, Y.
& Ogawa, H. 1978. Plant biomass and growth increment studies
in Pasoh forest. Malayan Nature Journal 30: 211-224.
Le Toan, T., Quegan,
S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou,
K., Plummer, S., Rocca, F., Saatchi, S., Shugart, H. & Ulander,
L. 2011. The BIOMASS mission: Mapping global forest biomass to better
understand the terrestrial carbon cycle. Remote Sensing of Environment
115(11): 2850-2860.
Lu, D. 2006. The potential
and challenge of remote sensing-based biomass estimation. International
Journal of Remote Sensing 27: 1297-1328.
Lucas, R., Armston, J.,
Fairfax, R., Fesham, R., Accad, A., Carreiras, J., Kelley, J., Bunting,
P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre,
T., Laidlaw, M. & Shimada, M. 2010. An evaluation of the PALSAR
L-band backscatter - Above ground biomass relationship Queensland,
Autralia: Impacts of surface moisture condition and vegetation structure.
IEEE Journal of Selected Topics on Applied Earth Observations
and Remote Sensing 3(4): 576-593.
Quinones, M.J. &
Hoekman, D.H. 2004. Exploration of factors limiting biomass estimation
by polarimetric radar in tropical forests. IEEE Transaction on
Geosciences and Remote Sensing 42: 86-104.
Robinson, C., Saatchi,
S., Neumann, M. & Gillespie, T. 2013. Impacts of spatial variability
on aboveground biomass estimation from L-band radar in a temperate
forest. Remote Sensing 5: 1001-1023.
Saatchi, S.S., Marlier,
M., Chazdon, R.L., Clark, D.B. & Russell, A.E. 2011. Impact
of spatial variability of tropical forest structure on radar estimation
of aboveground biomass. Remote Sensing of Environment 115(11):
2836-2849.
Sandberg, G., Ulander,
L., M.H., Fransson, J.E.S., Holmgren, J. & Le Toan, T. 2011.
Land P-band backscatter intensity for biomass retrieval in hemi
boreal forest. Remote Sensing of Environment 115(11): 2874-2886.
Sarker, L.R., Nichol,
J., Ahmad, B., Busu, I. & Rahman, A.A. 2012. Potential of texture
measurements of two-date dual polarization PALSAR data for the improvement
of forest biomass estimation. ISPRS Journal of Photogrammetry
69: 146-166.
Sessa, R. & Dolman,
H. 2008. Terrestrial essential climate variables for climate change
assessment, mitigation and adaptation. Rome: FAO GTOS-52.
Shimada, M., Isoguchi,
O., Tadono, T. & Isono, K. 2009. PLASAR radiometric calibration
and geometric calibration. IEEE Transaction on Geosciences and
Remote Sensing 3: 765-768.
Wright, S.J. 2010. The
future of tropical forests. Annals of the New York Academy of Sciences.
Ecological Conservation and Biology 1195: 1-27.
*Corresponding
author; email: hamdanomar@frim.gov.my
|