Sains Malaysiana 44(8)(2015): 1195-1201
Preparation of Titanium Dioxide Hollow Fiber Membrane Using Phase Inversion
and Sintering Technique for Gas Separation and Water Purification
(Penyediaan Membran Gentian Geronggang Titanium Dioksida (TiO2) Menggunakan
Teknik Penyongsangan
Fasa dan Persinteran
untuk Pemisahan
Gas dan Penulenan Air)
MUKHLIS
A
RAHMAN*, MOHD AKMAL
GHAZALI,
WAN
MUHAMMAD
SOLEHIN
WAN
ABD
AZIZ,
MOHD
HAFIZ
DZARFAN
OTHMAN,
JUHANA
JAAFAR
& AHMAD FAUZI ISMAIL
Advanced
Membrane Technology Research Centre, Faculty of Petroleum and Renewable
Energy Engineering, Universiti Teknologi
Malaysia , 81310 Skudai,
Johor Darul Takzim,
Malaysia
Received:
16 July 2014/Accepted: 6 April 2015
ABSTRACT
This article describes
the preparation of titanium dioxide (TiO2)
hollow fiber membrane using phase inversion and sintering technique.
In this study, nano-sized TiO2 powders
with different particle sizes were used to prepare ceramic hollow
fiber membranes. In a series of preparation steps, a dispersant
was dissolved in organic solvent before the addition of ceramic
powders. These steps were followed by the addition of polymer binder.
The membrane precursor was obtained by extruding the ceramic suspension
into a coagulation bath, which enabled the precipitation of the
precursor of ceramic hollow fiber membrane. The dried precursor
was later sintered at temperatures ranging from 1200 to 1300oC
to obtain TiO2 hollow fiber membrane. Scanning
electron microscopy (SEM) was used to study the morphology
of TiO2 hollow fiber membrane. The SEM
images show the membrane can be shaped into asymmetric
structure and symmetric structure based on the ceramic suspension
compositions. The highest mechanical strength obtained was 223 MPa
when the membrane prepared using 20 wt. % ceramic loading of single
nano-sized powder and sintered at 1300oC. TiO2 hollow
fiber membrane prepared using similar ceramic loading showed high
permeation rate of inert gas. High pure water fluxes were obtained
when permeability tests was carried out using TiO2 hollow
fiber membrane, prepared using mixture of nano-sized
particles, even though its cross-section have a sponge-like structure.
Keywords: Nano-size
particles; phase inversion; sintering process; titanium dioxide
ABSTRAK
Artikel ini menerangkan
penyediaan membran
gentian geronggang titanium dioksida (TiO2)
menggunakan teknik
penyongsangan fasa dan persinteran. Partikel TiO2 bersaiz nano dengan
saiz partikel
yang berbeza telah digunakan
untuk menyediakan
membran seramik. Dalam langkah persediaan, bahan penyerak dilarutkan terlebih dahulu sebelum penambahan bahan seramik. Langkah ini diikuti dengan penambahan pengikat polimer. Pelopor membran telah diperoleh
dengan menyemperit
campuran seramik ke dalam takungan
pengentalan, bagi
membolehkan pemendakan pengikat polimer berlaku. Pelopor yang telah kering kemudiannya
disinter pada julat
suhu 1200 dan 1300oC
untuk mendapatkan
membran gentian geronggang TiO2.
Mikroskop
elektron imbasan (SEM)
digunakan untuk mengkaji morfologi TiO2 gentian
geronggang membran.
Imej SEM
menunjukkan membran boleh dibentuk menjadi struktur yang simetri dan struktur
yang tidak simetri
berdasarkan komposisi campuran seramik. Kekuatan mekanik tertinggi yang diperoleh ialah 223 MPa apabila membran disediakan dengan menggunakan 20% (berat) seramik (serbuk bersaiz nano tunggal) dan
disinter pada suhu
1300oC.
Gentian geronggang membran
TiO2 disediakan
dengan menggunakan
muatan seramik sama menunjukkan
kadar ketelapan
yang tinggi terhadap gas lengai. Kadar ketelapan
air yang tinggi diperoleh
apabila ujian kebolehtelapan
dilakukan dengan
menggunakan gentian geronggang membran TiO2, disediakan
dengan menggunakan
campuran partikel bersaiz nano, walaupun
keratan rentas
tersebut mempunyai struktur seperti span.
Kata kunci: Fasa
balikan; partikel
bersaiz nano; proses persinteran; titanium dioksia
REFERENCES
García-García, F.R., Rahman, M.A., Kingsbury, B.F.K. & Li, K. 2011. Asymmetric ceramic hollow fibres: New
micro-supports for gas-phase catalytic reactions. Applied
Catalysis A: General 393: 71-77.
Kingsbury, B.F.K. & Li, K. 2009. A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science 328:
134-140.
Koros, W.J., Coleman, M.R. & Walker, D.R.B. 1992. Controlled permeability polymer membranes.
Annual Review of Materials Science 22: 47-89.
Lange, R.S.A., Hekkink, J.H.A., Keizer,
K. & Burggraaf, A.J. 1995. Formation and characterization of supported microporous
ceramic membranes prepared by sol-gel modification techniques.
Journal of Membrane Science 99: 57-75.
Liu, S., Tan, X., Li, K. & Hughes, R. 2001. Preparation and characterization
of SrCe0.95Yb0.05O2.975 hollow
fibre membranes. Journal of Membrane
Science 193: 249-260.
Othman, M.H.D., Wu, Z., Droushiotis, N.,
Doraswami, U., Kelsall,
G. & Li, K. 2010a. Single-step fabrication and
characterisations of electrolyte/anode
dual-layer hollow fibres for micro-tubular
solid oxide fuel cells. Journal of Membrane Science 351:
196-204.
Othman, M.H.D., Wu, Z., Droushiotis, N.,
Kelsall, G. & Li, K. 2010b. Morphological studies of macrostructure of Ni–CGO anode hollow fibres for intermediate temperature solid oxide fuel cells.
Journal of Membrane Science 360: 410-417.
Shao, P. & Huang, R.Y.M. 2007. Polymeric membrane pervaporation. Journal of Membrane Science
287: 162-179.
Ulbricht, M. 2006. Advanced functional polymer
membranes. Polymer 47: 2217-2262.
Wei, C.C., Chen, O.Y., Liu, Y. & Li, K. 2008. Ceramic asymmetric hollow fibre membranes
- One step fabrication process. Journal of Membrane Science
320: 191-197.
Wu,
Z.T., Thursfield, A., Metcalfe, I. &
Li, K. 2012. Effects of separation layer thickness on oxygen permeation
and mechanical strength of DL-HFMR-ScSZ.
Journal of Membrane Science 415: 229-236.
Zaidi,
S.M.J. 2003. Polymer sulfonation - A
versatile route to prepare proton-conducting membrane material for
advanced technologies. Arabian Journal for Science and Engineering
28: 183-194.
*Corresponding author; email: r_mukhlis@utm.my
|