Sains Malaysiana 44(8)(2015): 1195-1201

 

Preparation of Titanium Dioxide Hollow Fiber Membrane Using Phase Inversion and Sintering Technique for Gas Separation and Water Purification

(Penyediaan Membran Gentian Geronggang Titanium Dioksida (TiO2) Menggunakan Teknik Penyongsangan Fasa dan Persinteran untuk Pemisahan Gas dan Penulenan Air)

 

 

MUKHLIS A RAHMAN*, MOHD AKMAL GHAZALI, WAN MUHAMMAD SOLEHIN WAN ABD AZIZ, MOHD HAFIZ DZARFAN OTHMAN, JUHANA JAAFAR & AHMAD FAUZI ISMAIL

 

Advanced Membrane Technology Research Centre, Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia , 81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 16 July 2014/Accepted: 6 April 2015

 

ABSTRACT

This article describes the preparation of titanium dioxide (TiO2) hollow fiber membrane using phase inversion and sintering technique. In this study, nano-sized TiO2 powders with different particle sizes were used to prepare ceramic hollow fiber membranes. In a series of preparation steps, a dispersant was dissolved in organic solvent before the addition of ceramic powders. These steps were followed by the addition of polymer binder. The membrane precursor was obtained by extruding the ceramic suspension into a coagulation bath, which enabled the precipitation of the precursor of ceramic hollow fiber membrane. The dried precursor was later sintered at temperatures ranging from 1200 to 1300oC to obtain TiO2 hollow fiber membrane. Scanning electron microscopy (SEM) was used to study the morphology of TiO2 hollow fiber membrane. The SEM images show the membrane can be shaped into asymmetric structure and symmetric structure based on the ceramic suspension compositions. The highest mechanical strength obtained was 223 MPa when the membrane prepared using 20 wt. % ceramic loading of single nano-sized powder and sintered at 1300oC. TiO2 hollow fiber membrane prepared using similar ceramic loading showed high permeation rate of inert gas. High pure water fluxes were obtained when permeability tests was carried out using TiO2 hollow fiber membrane, prepared using mixture of nano-sized particles, even though its cross-section have a sponge-like structure.

 

Keywords: Nano-size particles; phase inversion; sintering process; titanium dioxide

 

ABSTRAK

Artikel ini menerangkan penyediaan membran gentian geronggang titanium dioksida (TiO2) menggunakan teknik penyongsangan fasa dan persinteran. Partikel TiO2 bersaiz nano dengan saiz partikel yang berbeza telah digunakan untuk menyediakan membran seramik. Dalam langkah persediaan, bahan penyerak dilarutkan terlebih dahulu sebelum penambahan bahan seramik. Langkah ini diikuti dengan penambahan pengikat polimer. Pelopor membran telah diperoleh dengan menyemperit campuran seramik ke dalam takungan pengentalan, bagi membolehkan pemendakan pengikat polimer berlaku. Pelopor yang telah kering kemudiannya disinter pada julat suhu 1200 dan 1300oC untuk mendapatkan membran gentian geronggang TiO2. Mikroskop elektron imbasan (SEM) digunakan untuk mengkaji morfologi TiO2 gentian geronggang membran. Imej SEM menunjukkan membran boleh dibentuk menjadi struktur yang simetri dan struktur yang tidak simetri berdasarkan komposisi campuran seramik. Kekuatan mekanik tertinggi yang diperoleh ialah 223 MPa apabila membran disediakan dengan menggunakan 20% (berat) seramik (serbuk bersaiz nano tunggal) dan disinter pada suhu 1300oC. Gentian geronggang membran TiO2 disediakan dengan menggunakan muatan seramik sama menunjukkan kadar ketelapan yang tinggi terhadap gas lengai. Kadar ketelapan air yang tinggi diperoleh apabila ujian kebolehtelapan dilakukan dengan menggunakan gentian geronggang membran TiO2, disediakan dengan menggunakan campuran partikel bersaiz nano, walaupun keratan rentas tersebut mempunyai struktur seperti span.

 

Kata kunci: Fasa balikan; partikel bersaiz nano; proses persinteran; titanium dioksia

REFERENCES

García-García, F.R., Rahman, M.A., Kingsbury, B.F.K. & Li, K. 2011. Asymmetric ceramic hollow fibres: New micro-supports for gas-phase catalytic reactions. Applied Catalysis A: General 393: 71-77.

Kingsbury, B.F.K. & Li, K. 2009. A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science 328: 134-140.

Koros, W.J., Coleman, M.R. & Walker, D.R.B. 1992. Controlled permeability polymer membranes. Annual Review of Materials Science 22: 47-89.

Lange, R.S.A., Hekkink, J.H.A., Keizer, K. & Burggraaf, A.J. 1995. Formation and characterization of supported microporous ceramic membranes prepared by sol-gel modification techniques. Journal of Membrane Science 99: 57-75.

Liu, S., Tan, X., Li, K. & Hughes, R. 2001. Preparation and characterization of SrCe0.95Yb0.05O2.975 hollow fibre membranes. Journal of Membrane Science 193: 249-260.

Othman, M.H.D., Wu, Z., Droushiotis, N., Doraswami, U., Kelsall, G. & Li, K. 2010a. Single-step fabrication and characterisations of electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells. Journal of Membrane Science 351: 196-204.

Othman, M.H.D., Wu, Z., Droushiotis, N., Kelsall, G. & Li, K. 2010b. Morphological studies of macrostructure of Ni–CGO anode hollow fibres for intermediate temperature solid oxide fuel cells. Journal of Membrane Science 360: 410-417.

Shao, P. & Huang, R.Y.M. 2007. Polymeric membrane pervaporation. Journal of Membrane Science 287: 162-179.

Ulbricht, M. 2006. Advanced functional polymer membranes. Polymer 47: 2217-2262.

Wei, C.C., Chen, O.Y., Liu, Y. & Li, K. 2008. Ceramic asymmetric hollow fibre membranes - One step fabrication process. Journal of Membrane Science 320: 191-197.

Wu, Z.T., Thursfield, A., Metcalfe, I. & Li, K. 2012. Effects of separation layer thickness on oxygen permeation and mechanical strength of DL-HFMR-ScSZ. Journal of Membrane Science 415: 229-236.

Zaidi, S.M.J. 2003. Polymer sulfonation - A versatile route to prepare proton-conducting membrane material for advanced technologies. Arabian Journal for Science and Engineering 28: 183-194.

 

 

*Corresponding author; email: r_mukhlis@utm.my

 

 

 

previous