Sains Malaysiana 45(10)(2016): 1423–1434

 

Evaluation on Efficiency of Pyroligneous Acid from Palm Kernel Shell as Antifungal and Solid Pineapple Biomass as Antibacterial and Plant Growth Promoter

(Penilaian terhadap Keberkesanan Asid Piroligneus daripada Tempurung Isirung Sawit sebagai Antikulat dan Sisa Pepejal Nanas sebagai Antibakteria dan Promoter Pertumbuhan Tumbuhan)

 

KHOIRUN NISA MAHMUD1, MAIZATULAKMAL YAHAYU1, SITI HAJAR MD. SARIP1, NURUL HUSNA RIZAN2, CHAI BING MIN2, NURUL FARHANA MUSTAFA2, SULAIMAN NGADIRAN1, SALMIAH UJANG3 & ZAINUL AKMAR ZAKARIA1*

 

1Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Johor Bahru,

Johor Darul Takzim, Malaysia

 

2Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

3Forest Products Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor Darul Ehsan, Malaysia

 

Received: 11 March 2015/Accepted: 28 February 2016

 

ABSTRACT

Generation of huge volumes of lignocellulosic biomass from agricultural sector is of concern due to its direct effects on the depletion of overall environmental quality. Conversion of biomass into solid biofuel through pyrolysis reaction has become one of the solutions to manage the abundance of biomass. Pyroligneous acid (PA) produced from the condensation of smoke generated during biomass carbonization process has the potential to be applied in various applications based on the diverse active chemical compounds present. In this study, PA obtained from palm kernel shell (PKS) was evaluated for antifungal activity and solid pineapple biomass (PB) was evaluated for antibacterial and plant growth promoter activities. Higher antifungal activity was determined for crude PA from PKS (PA-PKS) and dichloromethane-extract (DPA-PKS) with 0% coverage area when evaluated using rubber wood blocks against mold and blue sapstain after for 4 weeks of observation. This antifungal activity can be attributed to the presence of phenols and its major derivatives as suggested from the GC-MS and FTIR analysis. Concentrated PA from PB displayed good antibacterial capabilities with almost similar growth inhibition for Escherichia coli (13±1 to 20±1 mm) and Corynebacterium agropyri (20±1 mm). PA-PB also showed good potential as PGP where the addition of 2% (v/v) of PA-PB into the fertilizer for okra plant resulted in highest number of leaves and fruits while 4% (v/v) PA-PB managed to give highest plant height, longest root, heaviest fruits and biggest leaf diameter. Thus, this study successfully demonstrated the potential use of PA obtained from lignocelluosic biomass in various applications.

 

Keywords: Antibacterial; antifungal; plant growth promoter; pyroligneous acid

 

ABSTRAK

Lambakan biojisim lignoselulosa berpunca daripada aktiviti sektor pertanian adalah membimbangkan disebabkan oleh kesan langsungnya terhadap pengurangan kualiti alam sekitar. Penukaran sisa biojisim kepada bahan bakar biopepejal melalui pelbagai proses seperti pirolisis adalah salah satu langkah untuk menyelesaikan masalah lambakan biojisim. Asid piroligneus (PA) yang terhasil daripada proses penyulingan asap semasa proses pengkarbonan biojisim mempunyai potensi untuk digunakan dalam pelbagai aplikasi berdasarkan kehadiran pelbagai sebatian aktif kimia. Dalam kajian ini, PA daripada tempurung isirong sawit (PKS) dan biojisim nanas (PB) telah dinilai untuk aktiviti anti-kulat, anti-bakteria dan penggalak pertumbuhan tumbuhan (PGP). Aktiviti anti-kulat tertinggi ditunjukkan oleh PA-PKS mentah (PA-PKS) dan ekstrak diklorometana PA-PKS (DPA-PKS) dengan 0% luas litupan permukaan oleh kulapuk dan sapstain biru pada blok kayu getah selepas pemerhatian selama 4 minggu. Aktiviti antikulat adalah disebabkan kehadiran fenol dan terbitan utamanya berdasarkan analisis GC-MS dan FT-IR. PA pekat daripada PB menunjukkan keupayaan anti-bakteria dengan tingkat perencatan pertumbuhan yang sama untuk Escherichia coli (13±1 to 20±1 mm) dan Corynebacterium agropyri (20±1 mm). PA-PB juga menunjukkan potensi untuk digunakan sebagai PGP dengan penambahan 2% (v/v) PA-PB kepada baja untuk pokok bendi memberikan jumlah daun dan buah tertinggi manakala 4% (v/v) PA-PB memberikan pertumbuhan pokok tertinggi, akar terpanjang, buah terberat dan diameter daun terbesar. Kesimpulannya, kajian ini telah berjaya menunjukkan potensi PA daripada biojisim lignoselulosa dalam pelbagai aplikasi.

 

Kata kunci: Antibakteria; antikulat; asid piroligneus; promoter pertumbuhan tumbuhan

 

REFERENCES

Adams, M.R. & Hall, C.J. 2007. Growth inhibition of food-borne pathogens by lactic and acetic acids and their mixtures. International Journal of Food Science & Technology 23: 287-292.

Baimark, Y. & Niamsa, N. 2009. Study on wood vinegar for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenergy 33: 994-998.

Bauer, A.W., Kirby, W.M.M., Sherris, J.C.T. & Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45(4): 493-496.

Foy, C.D. 1992. Soil chemical factors limiting plant root growth. In Limitations to Plant Root Growth, edited by Hatfield, J.L. & Stewart, B.A. New York: Springer. 19: 97-149.

Ho, C.L., Lin, C.Y., Ka, S.M., Chen, A., Tasi, Y.L., Liu, M.L., Chiu, Y.C. & Hua, K.F. 2013. Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation. PloS One 8(10): 1-11.

Howard, R.L., Abotsi, E., Van Rensburg, E.J. & Howard, S. 2004. Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology 2(12): 602-619.

Ibrahim, D., Kassim, J., Sheh-Hong, L. & Rusli, W. 2013. Efficacy of pyroligneous acid from Rhizophora apiculata on pathogenic Candida albicans. Journal of Applied Pharmaceutical Science 3(7): 7-13.

Ishii, H., Matsuhayashi, M. & Nagai, A. 1990. Effects of pyroligneous acid distilled according to the composition on the growth of horticultural crops. In New Research and Development Results of Biochar and Pyroligneous Acid. Tokyo: Research association of using different components from wood carbonized. pp. 343-359.

Islam, M.R., Nabi, M.N. & Islam, M.N. 2012. The fuel properties of pyrolytic oils derived from carbonaceous solid wastes in Bangladesh. Jurnal Teknologi 38(1): 75-89.

Kimura, Y., Suto, S. & Tatsuka, M. 2002. Evaluation of carcinogenic/co-carcinogenic activity of chikusaku-eki, a bamboo charcoal by-product used as a folk remedy, in BALB/c 3T3 cells. Biol. Pharm. Bull. 25(8): 1026-1029.

Lee, C.S., Yi, E.H., Kim, H.R., Huh, S.R., Sung, S.H., Chung, M.H. & Ye, S.K. 2011a. Anti-dermatitis effects of oak wood vinegar on the DNCB-induced contact hypersensitivity via STAT3 suppression. Journal of Ethnopharmacology 135(3): 747-753.

Lee, S.H., H’ng, P.S., Chow, M.J., Sajap, A.S., Tey, B.T., Salmiah, U. & Sun, Y.L. 2011b. Effectiveness of pyroligneous acids from vapour released in charcoal industry against biodegradable agent under laboratory condition. Journal of Applied Sciences 11(24): 3848-3853.

Lee, S.H., H’ng, P.S., Lee, A.N., Sajap, A.S., Tey, B.T. & Salmiah, U. 2010. Production of pyroligneous acid from lignocellulosic biomass and their effectiveness against biological attacks. Journal of Applied Sciences 10(20): 2440-2446.

Loo, A.Y., Jain, K. & Darah, I. 2008. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chemistry 107(3): 1151-1160.


Ma, C., Li, W., Zu, Y., Yang, L. & Li, J. 2014. Antioxidant properties of pyroligneous acid obtained by thermochemical conversion of Schisandra chinensis Baill. Molecules 19(12): 20821-20838.

Ma, C., Song, K., Yu, J., Yang, L., Zhao, C., Wang, W., Zu, G. & Zu, Y. 2013. Pyrolysis process and antioxidant activity of pyroligneous acid from Rosmarinus officinalis leaves. Journal of Analytical and Applied Pyrolysis 104: 38-47.

Ma, X., Wei, Q., Zhang, S., Shi, L. & Zhao, Z. 2011. Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. Journal of Analytical and Applied Pyrolysis 91(2): 338-343.

Marumoto, S., Yamamoto, S.P., Nishimura, H., Onomoto, K., Yatagai, M., Yazaki, K., Fujita, T. & Watanabe, T. 2012. Identification of a germicidal compound against picornavirus in bamboo pyroligneous acid. Journal of Agricultural Food Chemistry 60(36): 9106-9111.

Mathew, S., Zakaria, Z.A. & Musa, N.F. 2015. Antioxidant property and chemical profile of pyroligneous acid from pineapple plant waste biomass. Process Biochemistry 50(11): 1985-1992.

Mungkunkamchao, T., Kesmala, T., Pimratch, S., Toomsan, B. & Jothityangkoon, D. 2013. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Scientia Horticulturae 154: 66-72.

Nakai, T., Kartal, S.N., Hata, T. & Imamura, Y. 2007. Chemical characterization of pyrolysis liquids of wood-based composite and evaluation of their bio-efficiency. Building and Environment 42(3): 1236-1241.

Oramahi, H.A. & Diba, F. 2013. Maximizing the production of liquid smoke from bark of durio by studying its potential compounds. Procedia Environmental Sciences 17: 60-69.

Ratanapisit, J., Apiraksakul, S., Rerngnarong, A., Chungsiriporn, J. & Bunyakarn, C. 2009. Preliminary evaluation of production and characterization of wood vinegar from rubberwood. Songklanakarin Journal Science of Technology 31(3): 343-349.

Rungruang, P. & Junyapoon, S. 2010. Antioxidative activity of phenolic compounds in pyroligneous acid produced from Eucalyptus wood. In The 8th International Symposium on Biocontrol and Biotechnology. pp. 102-106.

Souza, J.B.G., Re-Poppi, N. & Raposa Jr., J.L. 2012. Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectometry. J. Braz. Chem. Soc. 23(4): 610-617.

Suzuki, T., Yamakawa, M., Yamamoto, K., Watanabe, T. & Funaki, M. 1997. Recovery of wood preservatives from wood pyrolysis tar by solvent extraction. Holzforschung- International Journal of the Biology, Chemistry, Physics and Technology of Wood 51(3): 214-218.

Thorp, M.A., Kruger, J., Oliver, S., Nilssen, E.L.K. & Prescott, C.A.J. 2007. The antibacterial activity of acetic acid and Burrow’s solution as topical ontological preparations. The Journal of Laryngology & Otology 112(10): 925-928.

Weerachanchai, P., Tangsathitkulchai, C. & Tangsathitkulchai, M. 2011. Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue. Korean Journal of Chemical Engineering 28(12): 2262-2274.

Wei, Q., Ma, X. & Dong, J. 2010a. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. Journal of Analytical and Applied Pyrolysis 87(1): 24-28.

Wei, Q., Ma, X., Zhao, Z., Zhang, S. & Liu, S. 2010b. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. Journal of Analytical and Applied Pyrolysis 88(2): 149-154.

Wu, Q., Zhang, S., Hou, B., Zheng, H., Deng, W., Liu, D. & Tang, W. 2015. Study on the preparation of wood vinegar from biomass residues by carbonization process. Bioresource Technology 179: 98-103.

Yang, X.J., Lin, Z.K., Chen, J., Wu, J.H., Si, H.P. & Lin, K.Y. 2014. Research progress of biochar, pyroligneous acid and organic fertilizer mixture and its components in agricultural production. Applied Mechanics and Materials 448: 680-687.

 

 

*Corresponding author; email: zainul@ibd.utm.my

 

 

 

 

previous