Sains Malaysiana 45(10)(2016):
1423–1434
Evaluation on Efficiency of Pyroligneous
Acid from Palm Kernel Shell as Antifungal and Solid Pineapple
Biomass as Antibacterial and Plant Growth Promoter
(Penilaian terhadap Keberkesanan Asid Piroligneus
daripada Tempurung Isirung Sawit sebagai Antikulat dan Sisa Pepejal
Nanas sebagai Antibakteria dan Promoter Pertumbuhan Tumbuhan)
KHOIRUN NISA
MAHMUD1,
MAIZATULAKMAL
YAHAYU1,
SITI
HAJAR
MD.
SARIP1,
NURUL
HUSNA
RIZAN2,
CHAI
BING
MIN2,
NURUL
FARHANA
MUSTAFA2,
SULAIMAN
NGADIRAN1,
SALMIAH
UJANG3
& ZAINUL AKMAR ZAKARIA1*
1Institute of Bioproduct
Development, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor Darul Takzim, Malaysia
2Faculty of Chemical
Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor Darul Takzim, Malaysia
3Forest Products
Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor
Darul Ehsan, Malaysia
Received: 11 March
2015/Accepted: 28 February 2016
ABSTRACT
Generation of huge volumes
of lignocellulosic biomass from agricultural sector is of concern
due to its direct effects on the depletion of overall environmental
quality. Conversion of biomass into solid biofuel through pyrolysis
reaction has become one of the solutions to manage the abundance
of biomass. Pyroligneous acid (PA)
produced from the condensation
of smoke generated during biomass carbonization process has the potential
to be applied in various applications based on the diverse active
chemical compounds present. In this study, PA obtained
from palm kernel shell (PKS) was evaluated for antifungal activity
and solid pineapple biomass (PB) was evaluated for antibacterial
and plant growth promoter activities. Higher antifungal activity
was determined for crude PA from PKS (PA-PKS)
and dichloromethane-extract (DPA-PKS) with 0% coverage area
when evaluated using rubber wood blocks against mold and blue
sapstain after for 4 weeks of observation. This antifungal activity
can be attributed to the presence of phenols and its major derivatives
as suggested from the GC-MS
and FTIR analysis. Concentrated PA
from PB
displayed good antibacterial capabilities with almost
similar growth inhibition for Escherichia coli (13±1 to 20±1 mm)
and Corynebacterium agropyri (20±1 mm). PA-PB also
showed good potential as PGP where the addition of 2% (v/v) of
PA-PB
into the fertilizer for okra plant resulted in highest
number of leaves and fruits while 4% (v/v) PA-PB managed to give highest
plant height, longest root, heaviest fruits and biggest leaf diameter.
Thus, this study successfully demonstrated the potential use of
PA obtained from lignocelluosic biomass in various applications.
Keywords: Antibacterial; antifungal;
plant growth promoter; pyroligneous acid
ABSTRAK
Lambakan biojisim lignoselulosa
berpunca daripada aktiviti sektor pertanian adalah membimbangkan
disebabkan oleh kesan langsungnya terhadap pengurangan kualiti
alam sekitar. Penukaran sisa biojisim kepada bahan bakar biopepejal
melalui pelbagai proses seperti pirolisis adalah salah satu langkah
untuk menyelesaikan masalah lambakan biojisim. Asid piroligneus
(PA) yang terhasil daripada proses
penyulingan asap semasa proses pengkarbonan biojisim mempunyai
potensi untuk digunakan dalam pelbagai aplikasi berdasarkan kehadiran
pelbagai sebatian aktif kimia. Dalam kajian ini, PA daripada tempurung isirong
sawit (PKS) dan biojisim nanas (PB)
telah dinilai untuk aktiviti anti-kulat, anti-bakteria dan penggalak
pertumbuhan tumbuhan (PGP). Aktiviti anti-kulat tertinggi ditunjukkan
oleh PA-PKS mentah (PA-PKS)
dan ekstrak diklorometana PA-PKS (DPA-PKS)
dengan 0% luas litupan permukaan oleh kulapuk dan sapstain biru
pada blok kayu getah selepas pemerhatian selama 4 minggu. Aktiviti
antikulat adalah disebabkan kehadiran fenol dan terbitan utamanya
berdasarkan analisis GC-MS dan
FT-IR.
PA
pekat daripada PB menunjukkan keupayaan anti-bakteria
dengan tingkat perencatan pertumbuhan yang sama untuk Escherichia
coli (13±1 to 20±1 mm) dan Corynebacterium agropyri
(20±1 mm). PA-PB
juga menunjukkan potensi untuk digunakan sebagai
PGP dengan
penambahan 2% (v/v) PA-PB kepada baja untuk pokok bendi memberikan
jumlah daun dan buah tertinggi manakala 4% (v/v) PA-PB memberikan
pertumbuhan pokok tertinggi, akar terpanjang, buah terberat dan
diameter daun terbesar. Kesimpulannya, kajian ini telah berjaya
menunjukkan potensi PA daripada biojisim lignoselulosa dalam pelbagai
aplikasi.
Kata kunci: Antibakteria; antikulat; asid piroligneus; promoter pertumbuhan
tumbuhan
REFERENCES
Adams,
M.R. & Hall, C.J. 2007. Growth inhibition of food-borne pathogens
by lactic and acetic acids and their mixtures. International
Journal of Food Science & Technology 23: 287-292.
Baimark,
Y. & Niamsa, N. 2009. Study on wood vinegar for use as coagulating
and antifungal agents on the production of natural rubber sheets.
Biomass Bioenergy 33: 994-998.
Bauer,
A.W., Kirby, W.M.M., Sherris, J.C.T. & Turck, M. 1966. Antibiotic
susceptibility testing by a standardized single disk method. American
Journal of Clinical Pathology 45(4): 493-496.
Foy,
C.D. 1992. Soil chemical factors limiting plant root growth. In
Limitations to Plant Root Growth, edited by Hatfield, J.L.
& Stewart, B.A. New York: Springer. 19: 97-149.
Ho,
C.L., Lin, C.Y., Ka, S.M., Chen, A., Tasi, Y.L., Liu, M.L., Chiu,
Y.C. & Hua, K.F. 2013. Bamboo vinegar decreases inflammatory
mediator expression and NLRP3 inflammasome activation by inhibiting
reactive oxygen species generation and protein kinase C-α/δ
activation. PloS One 8(10): 1-11.
Howard,
R.L., Abotsi, E., Van Rensburg, E.J. & Howard, S. 2004. Lignocellulose
biotechnology: Issues of bioconversion and enzyme production.
African Journal of Biotechnology 2(12): 602-619.
Ibrahim,
D., Kassim, J., Sheh-Hong, L. & Rusli, W. 2013. Efficacy of
pyroligneous acid from Rhizophora apiculata on pathogenic
Candida albicans. Journal of Applied Pharmaceutical
Science 3(7): 7-13.
Ishii,
H., Matsuhayashi, M. & Nagai, A. 1990. Effects of pyroligneous
acid distilled according to the composition on the growth of horticultural
crops. In New Research and Development Results of Biochar and
Pyroligneous Acid. Tokyo: Research association of using different
components from wood carbonized. pp. 343-359.
Islam,
M.R., Nabi, M.N. & Islam, M.N. 2012. The fuel properties of
pyrolytic oils derived from carbonaceous solid wastes in Bangladesh.
Jurnal Teknologi 38(1): 75-89.
Kimura,
Y., Suto, S. & Tatsuka, M. 2002. Evaluation of carcinogenic/co-carcinogenic
activity of chikusaku-eki, a bamboo charcoal by-product used as
a folk remedy, in BALB/c 3T3 cells. Biol. Pharm. Bull.
25(8): 1026-1029.
Lee,
C.S., Yi, E.H., Kim, H.R., Huh, S.R., Sung, S.H., Chung, M.H.
& Ye, S.K. 2011a. Anti-dermatitis effects of oak wood vinegar
on the DNCB-induced contact hypersensitivity via STAT3 suppression.
Journal of Ethnopharmacology 135(3): 747-753.
Lee,
S.H., H’ng, P.S., Chow, M.J., Sajap, A.S., Tey, B.T., Salmiah,
U. & Sun, Y.L. 2011b. Effectiveness of pyroligneous acids
from vapour released in charcoal industry against biodegradable
agent under laboratory condition. Journal of Applied Sciences
11(24): 3848-3853.
Lee,
S.H., H’ng, P.S., Lee, A.N., Sajap, A.S., Tey, B.T. & Salmiah,
U. 2010. Production of pyroligneous acid from lignocellulosic
biomass and their effectiveness against biological attacks. Journal
of Applied Sciences 10(20): 2440-2446.
Loo, A.Y., Jain, K.
& Darah, I. 2008. Antioxidant activity of compounds isolated
from the pyroligneous acid, Rhizophora apiculata. Food
Chemistry 107(3): 1151-1160.
Ma, C., Li, W., Zu, Y., Yang, L. & Li, J. 2014. Antioxidant
properties of pyroligneous acid obtained by thermochemical conversion
of Schisandra chinensis Baill. Molecules 19(12):
20821-20838.
Ma, C., Song, K.,
Yu, J., Yang, L., Zhao, C., Wang, W., Zu, G. & Zu, Y. 2013.
Pyrolysis process and antioxidant activity of pyroligneous acid
from Rosmarinus officinalis leaves. Journal of Analytical
and Applied Pyrolysis 104: 38-47.
Ma, X., Wei, Q.,
Zhang, S., Shi, L. & Zhao, Z. 2011. Isolation and bioactivities
of organic acids and phenols from walnut shell pyroligneous acid.
Journal of Analytical and Applied Pyrolysis 91(2): 338-343.
Marumoto, S., Yamamoto,
S.P., Nishimura, H., Onomoto, K., Yatagai, M., Yazaki, K., Fujita,
T. & Watanabe, T. 2012. Identification of a germicidal compound
against picornavirus in bamboo pyroligneous acid. Journal of
Agricultural Food Chemistry 60(36): 9106-9111.
Mathew, S., Zakaria,
Z.A. & Musa, N.F. 2015. Antioxidant property and chemical
profile of pyroligneous acid from pineapple plant waste biomass.
Process Biochemistry 50(11): 1985-1992.
Mungkunkamchao,
T., Kesmala, T., Pimratch, S., Toomsan, B. & Jothityangkoon,
D. 2013. Wood vinegar and fermented bioextracts: Natural products
to enhance growth and yield of tomato (Solanum lycopersicum
L.). Scientia Horticulturae 154: 66-72.
Nakai, T., Kartal,
S.N., Hata, T. & Imamura, Y. 2007. Chemical characterization
of pyrolysis liquids of wood-based composite and evaluation of
their bio-efficiency. Building and Environment 42(3): 1236-1241.
Oramahi, H.A. &
Diba, F. 2013. Maximizing the production of liquid smoke from
bark of durio by studying its potential compounds. Procedia
Environmental Sciences 17: 60-69.
Ratanapisit, J.,
Apiraksakul, S., Rerngnarong, A., Chungsiriporn, J. & Bunyakarn,
C. 2009. Preliminary evaluation of production and characterization
of wood vinegar from rubberwood. Songklanakarin Journal Science
of Technology 31(3): 343-349.
Rungruang, P. &
Junyapoon, S. 2010. Antioxidative activity of phenolic compounds
in pyroligneous acid produced from Eucalyptus wood. In The
8th International Symposium on Biocontrol and Biotechnology. pp.
102-106.
Souza, J.B.G.,
Re-Poppi, N. & Raposa Jr., J.L. 2012. Characterization of
pyroligneous acid used in agriculture by gas chromatography-mass
spectometry. J. Braz. Chem. Soc. 23(4): 610-617.
Suzuki, T., Yamakawa,
M., Yamamoto, K., Watanabe, T. & Funaki, M. 1997. Recovery
of wood preservatives from wood pyrolysis tar by solvent extraction.
Holzforschung- International Journal of the Biology, Chemistry,
Physics and Technology of Wood 51(3): 214-218.
Thorp, M.A., Kruger,
J., Oliver, S., Nilssen, E.L.K. & Prescott, C.A.J. 2007. The
antibacterial activity of acetic acid and Burrow’s solution as
topical ontological preparations. The Journal of Laryngology
& Otology 112(10): 925-928.
Weerachanchai,
P., Tangsathitkulchai, C. & Tangsathitkulchai, M. 2011. Characterization
of products from slow pyrolysis of palm kernel cake and cassava
pulp residue. Korean Journal of Chemical Engineering 28(12):
2262-2274.
Wei, Q., Ma, X.
& Dong, J. 2010a. Preparation, chemical constituents and antimicrobial
activity of pyroligneous acids from walnut tree branches. Journal
of Analytical and Applied Pyrolysis 87(1): 24-28.
Wei, Q., Ma, X.,
Zhao, Z., Zhang, S. & Liu, S. 2010b. Antioxidant activities
and chemical profiles of pyroligneous acids from walnut shell.
Journal of Analytical and Applied Pyrolysis 88(2): 149-154.
Wu, Q., Zhang,
S., Hou, B., Zheng, H., Deng, W., Liu, D. & Tang, W. 2015.
Study on the preparation of wood vinegar from biomass residues
by carbonization process. Bioresource Technology 179: 98-103.
Yang, X.J., Lin,
Z.K., Chen, J., Wu, J.H., Si, H.P. & Lin, K.Y. 2014. Research
progress of biochar, pyroligneous acid and organic fertilizer
mixture and its components in agricultural production. Applied
Mechanics and Materials 448: 680-687.
*Corresponding author; email: zainul@ibd.utm.my
|