Sains Malaysiana 45(10)(2016): 1469–1476

 

Screening and Production of Polyhydroxybutyrate (PHB) by Bacterial Strains Isolated from Rhizosphere Soil of Groundnut plants

(Penyaringan dan Pengeluaran Polihidroksibutirat (PHB) oleh Pencilan Strain Bakteria

daripada Tanah Rizosfera Tumbuhan Kacang Tanah)

 

HALIRU MUSA1*, BADMUS BASIRAT BOLANLE2, FARIZUL HAFIZ KASIM1

& DACHYAR ARBAIN1

 

1School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian,

Jejawi 3, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

2Kwara State Polytechnic, 240001 Ilorin, Kwara State, Nigeria

 

Received: 22 December 2015/ Accepted: 12 March 2016

ABSTRACT

Polyhydroxybutyrate (PHB) otherwise known as bioplastics are biodegradable materials that are accumulated in various microorganisms to serve as carbon and energy reservoirs and regarded as an attractive alternative to petroleum-derived plastics. Although research has been conducted on isolation of PHB-producing microorganisms from different ecological environments, few studies have been carried out on isolation of potential PHB-producing microorganisms from rhizosphere environment of groundnut plants, Arachis hypogaea which can be regarded as a good environment for the isolation of potential PHB-producing microorganisms. In the present study, a total of twenty-one (21) bacterial strains were primarily screened and isolated from rhizosphere soil of a groundnut plant. Four bacterial isolates with maximum PHB-producing potential upon screening using submerged fermentation were selected for further studies. The fermentation pattern of PHB production was studied using different nutrient sources. The influence of agitation on PHB production was also studied. Mannitol stimulated maximum (6.076a mg/mL) PHB production by Bacillus sp. 1; KNO3 used as a limiting nutrient induced best (5.728a mg/mL) PHB production by Citrobacter sp. and MgSO4.7H2O supported maximum (5.972a mg/mL) PHB production in Enterococcus sp. A low agitation speed of 150 rpm was found to support best (5.802a mg/mL) PHB production by Bacillus sp.1. Findings from this study indicated that the isolated bacterial strains have high PHB- producing potential. The need to explore other environment harbouring microbial strains with high PHB-producing potential is paramount to the discovery of bioplastics with improved properties for potential industrial applications.

 

Keywords: Arachis hypogaea; bioplastics; polyhydroxybutyrate; Sudan-Black staining

 

ABSTRAK

Polihidroksibutirat (PHB) atau dikenali sebagai bioplastik adalah bahan terbiodegradasi yang terkumpul di dalam pelbagai mikroorganisma untuk menjadi takungan karbon dan tenaga serta dianggap sebagai alternatif yang menarik kepada plastik daripada petroleum. Walaupun penyelidikan telah dijalankan ke atas pengasingan mikroorganisma penghasilan PHB dari persekitaran ekologi yang berbeza, beberapa kajian yang telah dijalankan ke atas pengasingan mikroorganisma penghasilan PHB yang berpotensi daripada persekitaran rizosfera tumbuhan kacang tanah, Arachis hypogaea boleh dianggap sebagai persekitaran yang baik untuk pengasingan mikroorganisma yang berpotensi menghasilkan PHB. Dalam kajian ini, sejumlah dua puluh satu (21) strain bakteria telah ditapis dan diasingkan dari tanah rizosfera dan tumbuhan kacang tanah. Empat pencilan bakteria dengan potensi maksimum untuk penghasilan PHB melalui penyaringan fermentasi tenggelam telah dipilih untuk kajian lanjut. Corak fermentasi pengeluaran PHB dikaji menggunakan sumber nutrien berbeza. Pengaruh penggoncangan ke atas pengeluaran PHB juga dikaji. Manitol merangsang pengeluaran maksimum PHB (6.076a mg/mL) dengan penggunaan Bacillus sp.1; KNO3 sebagai penghad nutrien teraruh terbaik (5.728a mg/mL) pengeluaran PHB oleh Citrobacter sp. dan MgSO4.7H2O menyokong pengeluaran maksimum PHB (5.972a mg/mL) dalam Enterococcus sp.. Kelajuan penggoncangan yang rendah (150 rpm) dilihat menyokong pengeluaran terbaik PHB (5.802a mg/mL) oleh Bacillus sp.1. Hasil kajian ini menunjukkan bahawa strain bakteria yang dipencil mempunyai potensi tinggi dalam penghasilan PHB. Keperluan untuk meneroka persekitaran lain yang melindungi strain mikrob berpotensi tinggi dalam penghasilan PHB amat penting dalam penemuan bioplastik dengan sifat yang lebih baik untuk aplikasi industri yang berpotensi.

 

Kata kunci: Arachis hypogaea; bioplastic; pewarnaan Sudan-Hitam; polihidroksibutirat

REFERENCES

Aarthi, N. & Ramana, K.V. 2010. Identification and characterization of polyhydroxybutyrate producing Bacillus cereus and Bacillus mycoides strains. International Journal of Environmental Sciences 1(5): 744-756.

Aramvash, A., Shahabi, Z.A., Aghjeh, S.D. & Ghafari, M.D. 2015. Statistical physical and nutrient optimization of  bioplastic polyhydroxybutyrate production by Cupriavidus necator. International Journal of Environmental Science and Technology 12: 2307-2316.

Aslim, B., Yuksekdag, Z.N. & Beyatli, Y. 2002. Determination of PHB quantities of certain Bacillus species isolated from soil. Turkish Electronic Journal of Biotechnology Special Issue: 24-30.

Baei, M.S., Najafpour, G.D., Lasemi, Z.T, Younesi, H.I. & Khodabandeh, M. 2010. Optimization PHAs production from dairy industry waste water (cheese whey) by Azohydromonas lata DSMZ 1123. Iranica Journal of Energy and Environment 1: 132-136.

Belal, E.B. 2013. Production of poly-β-hydroxybutyric acid (PHB) by Rhizobium elti and Pseudomonas stutzeri. Current Research Journal of Biological Sciences 5(6): 273-284.

Berekaa, M.M. & Al-Thawadi, A.M. 2012. Biosynthesis of polyhydroxybutyrate (PHB) biopolymer by Bacillus megaterium SW1-2: Application of box-Behnken design for optimization of process parameters. African Journal of Microbiology Research 6(9): 2101-2108.

Duncan, P.B. 1955. New multiple ranges and multiple F-tests. Biometrics 11: 1-42.

Elsayed, N.S., Aboshanab, K.M., Aboulwafa, M.M. & Hassouna, N.A. 2013. Optimization of bioplastic (poly- β-hydroxybutyrate) production by a promising Azomonas macrocytogenes bacterial isolate P173. African Journal of Microbiology Research 7(43): 5025-5035.

Holt, J.G., Krieg, N.R., Peter, H.A., Sneath Staley, J.T. & Williams, S.T. 2000. Bergey’s Manual of Determinative Bacteriology. 9th ed. Philadelphia: Lippincott Williams and Wilkins. pp. 175-582.

Hungund, B., Shyama, V.S., Patwardhan, P. & Saleh, A.M. 2013. Production of polyhydroxyalkanoate from Paenibacillus durus BV-1 isolated from oil mill soil. Journal of Microbial and Biochemical Technology 5(1): 13-17.

Israni, N. & Shivakumar, S. 2015. Evaluation of upstream process parameters influencing the growth associated PHA accumulation in Bacillus sp. Ti3. Journal of Scientific and Industrial Research 74: 290-295.

Lonsane, B.K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Vingiegra-Gonzalez, G., Ghlidyal, N.P., Ramakrishna, M. & Krishnaiah, M.M. 1991. Scale-up strategies for solid state fermentation systems. Process Biochemistry 27: 259-273.

Mohd-Zahari, M.A.K., Ariffin, H., Mokhtar, M.N., Salihon, J., Shirai, Y. & Hassan, M.A. 2012. Factors affecting poly (3-hydroxybutyrate) production from oil palm frond juice by Cupriavidus necator (CCUG52238). Journal of Biomedicine and Biotechnology 12: 1-8.

Olutiola, P.O., Famurewa, O. & Sountag, H.G. 2000. An Introduction to General Microbiology: A Practical Approach. Heidelberg: Heidelberger Verlagsanstalt und Druckerei GmbH.

Pei, L., Schmidt, M. & Wei, W. 2011. Conversion of biomass into bioplastics and their potential environmental impacts. In Biotechnology of Biopolymers, edited by Elnashar, M. pp.57-74. http://www.intechopen.com/books/biotechnology-of-biopolymers/conversion-of-biomass-into-bioplastics-and-their-potential-environmental-impacts.

Saharan, B.S., Grewal, A. & Kumar, P. 2014. Biotechnological production of polyhydroxyalkanoates: A review on trends and latest developments. Chinese Journal of Biology 14: 1-18.

Sasidharan, R.S., Bhat, S.G. & Chandrasekaran, M. 2015. Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Annals of Microbiology 65(1): 455-465.

Shodhganga, T. 2011. Review of literature on poly-3- hydroxybutyrate. A PhD thesis submitted to Department of Environmental and Sustainability Studies, Teri University, Vasant Kunj, India. pp. 6-52 (Unpublished).

Sindhu, R., Ammu, B., Binod, P., Deepthi, S.K., Ramachandran, K.B., Soccol, C.R. & Pandey, A. 2011. Production and characterization of pol-3-hydroxybutyrate from crude glycerol from Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Archives of Biology and Technology 54(4): 783-794.

Wei, Y., Chen, W., Wu, H. & Janarthanan, O. 2011. Biodegradable and biocompatible material polyhydroxybutyrate produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Marine Drugs 9: 615-624.

Zahra, M.B., Ebrahim, V., Abbas, S.S., Ramin, K. & Kianoush, K. 2009. Media selection for poly (hydroxybutyrate) production from methanol by Methylobacterium extorquens DSMZ 1340. Iranian Journal of Chemistry and Chemical Engineering 28(3): 45-52.

 

 

*Corresponding author; email: Hallyruh@gmail.com

 

 

 

 

previous