Sains Malaysiana 45(10)(2016): 1469–1476
Screening and Production of Polyhydroxybutyrate
(PHB) by Bacterial Strains Isolated from Rhizosphere Soil of Groundnut
plants
(Penyaringan dan Pengeluaran Polihidroksibutirat
(PHB) oleh Pencilan
Strain Bakteria
daripada Tanah Rizosfera Tumbuhan
Kacang Tanah)
HALIRU MUSA1*,
BADMUS
BASIRAT
BOLANLE2, FARIZUL HAFIZ
KASIM1
& DACHYAR
ARBAIN1
1School of Bioprocess
Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian,
Jejawi 3, 02600
Arau, Perlis Indera Kayangan, Malaysia
2Kwara State Polytechnic,
240001 Ilorin, Kwara State, Nigeria
Received: 22 December 2015/ Accepted:
12 March 2016
ABSTRACT
Polyhydroxybutyrate (PHB)
otherwise known as bioplastics are biodegradable materials that
are accumulated in various microorganisms to serve as carbon and
energy reservoirs and regarded as an attractive alternative to
petroleum-derived plastics. Although research has been conducted
on isolation of PHB-producing
microorganisms from different ecological environments, few studies
have been carried out on isolation of potential PHB-producing microorganisms from
rhizosphere environment of groundnut plants, Arachis
hypogaea which can be regarded as a good environment for the
isolation of potential PHB-producing microorganisms. In the present study, a total
of twenty-one (21) bacterial strains were primarily screened and
isolated from rhizosphere soil of a groundnut plant. Four bacterial
isolates with maximum PHB-producing potential upon screening using submerged fermentation
were selected for further studies. The fermentation pattern of
PHB
production was studied using different nutrient
sources. The influence of agitation on PHB
production was also studied. Mannitol stimulated
maximum (6.076a mg/mL)
PHB
production by Bacillus sp. 1; KNO3 used
as a limiting nutrient induced best (5.728a mg/mL)
PHB
production by Citrobacter sp. and MgSO4.7H2O
supported maximum (5.972a mg/mL) PHB production
in Enterococcus sp. A low agitation speed of 150 rpm was
found to support best (5.802a mg/mL) PHB production
by Bacillus sp.1. Findings from this study indicated that
the isolated bacterial strains have high PHB- producing potential. The
need to explore other environment harbouring microbial strains
with high PHB-producing
potential is paramount to the discovery of bioplastics with improved
properties for potential industrial applications.
Keywords: Arachis
hypogaea; bioplastics; polyhydroxybutyrate; Sudan-Black staining
ABSTRAK
Polihidroksibutirat
(PHB)
atau dikenali sebagai bioplastik adalah bahan terbiodegradasi
yang terkumpul di dalam pelbagai mikroorganisma untuk menjadi
takungan karbon dan tenaga serta dianggap sebagai alternatif yang
menarik kepada plastik daripada petroleum. Walaupun
penyelidikan telah dijalankan ke atas pengasingan mikroorganisma
penghasilan PHB dari persekitaran ekologi yang berbeza, beberapa kajian
yang telah dijalankan ke atas pengasingan mikroorganisma penghasilan
PHB
yang berpotensi daripada persekitaran rizosfera
tumbuhan kacang tanah, Arachis
hypogaea boleh dianggap sebagai persekitaran yang baik untuk
pengasingan mikroorganisma yang berpotensi menghasilkan PHB.
Dalam kajian ini, sejumlah dua puluh satu (21) strain bakteria
telah ditapis dan diasingkan dari tanah rizosfera dan tumbuhan
kacang tanah. Empat pencilan bakteria dengan potensi maksimum untuk penghasilan
PHB
melalui penyaringan fermentasi tenggelam telah dipilih
untuk kajian lanjut. Corak fermentasi pengeluaran PHB dikaji menggunakan sumber
nutrien berbeza. Pengaruh penggoncangan
ke atas pengeluaran PHB
juga dikaji. Manitol merangsang pengeluaran
maksimum PHB
(6.076a mg/mL)
dengan penggunaan Bacillus sp.1; KNO3 sebagai
penghad nutrien teraruh terbaik (5.728a mg/mL) pengeluaran PHB
oleh Citrobacter sp. dan MgSO4.7H2O
menyokong pengeluaran maksimum PHB (5.972a mg/mL)
dalam Enterococcus sp.. Kelajuan
penggoncangan yang rendah (150 rpm) dilihat menyokong pengeluaran
terbaik PHB
(5.802a mg/mL)
oleh Bacillus sp.1.
Hasil kajian ini menunjukkan bahawa strain bakteria yang dipencil
mempunyai potensi tinggi dalam penghasilan PHB. Keperluan untuk meneroka persekitaran
lain yang melindungi strain mikrob berpotensi
tinggi dalam penghasilan PHB amat penting dalam penemuan
bioplastik dengan sifat yang lebih baik untuk aplikasi industri
yang berpotensi.
Kata kunci: Arachis hypogaea; bioplastic; pewarnaan Sudan-Hitam; polihidroksibutirat
REFERENCES
Aarthi, N. & Ramana, K.V. 2010. Identification and characterization of polyhydroxybutyrate producing
Bacillus cereus and Bacillus mycoides strains.
International Journal of Environmental Sciences 1(5): 744-756.
Aramvash,
A., Shahabi, Z.A., Aghjeh, S.D. & Ghafari, M.D. 2015. Statistical physical
and nutrient optimization of bioplastic
polyhydroxybutyrate production by Cupriavidus necator.
International Journal of Environmental Science and Technology
12: 2307-2316.
Aslim,
B., Yuksekdag, Z.N. & Beyatli, Y. 2002. Determination
of PHB quantities of certain Bacillus species isolated
from soil. Turkish Electronic Journal of Biotechnology Special
Issue: 24-30.
Baei,
M.S., Najafpour, G.D., Lasemi, Z.T, Younesi, H.I. & Khodabandeh,
M. 2010. Optimization PHAs production from dairy industry waste water (cheese
whey) by Azohydromonas lata DSMZ 1123. Iranica
Journal of Energy and Environment 1: 132-136.
Belal,
E.B. 2013.
Production of poly-β-hydroxybutyric acid
(PHB) by Rhizobium elti and Pseudomonas stutzeri.
Current Research Journal of Biological Sciences 5(6): 273-284.
Berekaa, M.M. & Al-Thawadi, A.M. 2012. Biosynthesis of polyhydroxybutyrate
(PHB) biopolymer by Bacillus megaterium SW1-2: Application
of box-Behnken design for optimization of process parameters.
African Journal of Microbiology Research 6(9): 2101-2108.
Duncan, P.B. 1955.
New multiple ranges and multiple F-tests.
Biometrics 11: 1-42.
Elsayed, N.S.,
Aboshanab, K.M., Aboulwafa, M.M. &
Hassouna, N.A. 2013. Optimization of bioplastic
(poly- β-hydroxybutyrate) production by a promising Azomonas
macrocytogenes bacterial isolate P173. African Journal
of Microbiology Research 7(43): 5025-5035.
Holt,
J.G., Krieg, N.R., Peter, H.A., Sneath Staley, J.T. & Williams,
S.T. 2000. Bergey’s Manual
of Determinative Bacteriology. 9th ed. Philadelphia: Lippincott
Williams and Wilkins. pp. 175-582.
Hungund,
B., Shyama, V.S., Patwardhan, P. & Saleh, A.M. 2013. Production of
polyhydroxyalkanoate from Paenibacillus durus BV-1 isolated
from oil mill soil. Journal of Microbial and Biochemical Technology
5(1): 13-17.
Israni, N. &
Shivakumar, S. 2015. Evaluation of upstream process parameters
influencing the growth associated PHA accumulation in Bacillus
sp. Ti3. Journal of Scientific and Industrial Research
74: 290-295.
Lonsane, B.K.,
Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Vingiegra-Gonzalez,
G., Ghlidyal, N.P., Ramakrishna, M. & Krishnaiah, M.M. 1991.
Scale-up strategies for solid state fermentation
systems. Process Biochemistry 27: 259-273.
Mohd-Zahari,
M.A.K., Ariffin, H., Mokhtar, M.N., Salihon, J., Shirai, Y. &
Hassan, M.A. 2012.
Factors affecting poly (3-hydroxybutyrate) production
from oil palm frond juice by Cupriavidus necator (CCUG52238).
Journal of Biomedicine and Biotechnology 12: 1-8.
Olutiola,
P.O., Famurewa, O. & Sountag, H.G. 2000. An Introduction
to General Microbiology: A Practical
Approach. Heidelberg: Heidelberger
Verlagsanstalt und Druckerei GmbH.
Pei,
L., Schmidt, M. & Wei, W. 2011. Conversion of biomass
into bioplastics and their potential environmental impacts.
In Biotechnology of Biopolymers, edited by Elnashar, M. pp.57-74.
http://www.intechopen.com/books/biotechnology-of-biopolymers/conversion-of-biomass-into-bioplastics-and-their-potential-environmental-impacts.
Saharan, B.S.,
Grewal, A. & Kumar, P. 2014. Biotechnological production of
polyhydroxyalkanoates: A review on trends and latest developments.
Chinese Journal of Biology 14: 1-18.
Sasidharan,
R.S., Bhat, S.G. & Chandrasekaran, M. 2015. Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio
azureus BTKB33 under submerged fermentation. Annals
of Microbiology 65(1): 455-465.
Shodhganga, T.
2011. Review of literature on poly-3- hydroxybutyrate. A PhD thesis
submitted to Department of Environmental and Sustainability Studies,
Teri University, Vasant Kunj, India. pp. 6-52 (Unpublished).
Sindhu,
R., Ammu, B., Binod, P., Deepthi, S.K., Ramachandran, K.B., Soccol,
C.R. & Pandey, A. 2011.
Production and characterization of pol-3-hydroxybutyrate
from crude glycerol from Bacillus sphaericus NII 0838 and
improving its thermal properties by blending with other polymers.
Brazilian Archives of Biology and Technology 54(4): 783-794.
Wei, Y., Chen,
W., Wu, H. & Janarthanan, O. 2011. Biodegradable and biocompatible
material polyhydroxybutyrate produced by an indigenous Vibrio
sp. BM-1 isolated from marine environment. Marine Drugs
9: 615-624.
Zahra, M.B., Ebrahim,
V., Abbas, S.S., Ramin, K. & Kianoush, K. 2009. Media
selection for poly (hydroxybutyrate) production from methanol
by Methylobacterium extorquens DSMZ 1340. Iranian
Journal of Chemistry and Chemical Engineering 28(3): 45-52.
*Corresponding author; email: Hallyruh@gmail.com