Sains Malaysiana 45(10)(2016):
1509–1516
Penyingkiran Ammonia dan Logam Berat
daripada Air Sisa Industri Automotif Menggunakan Pasir Terubah
Suai Secara Kimia
(Heavy Metals Removal from Automotive Wastewater
using Chemically Modified Sand)
ABDUL FATTAH
ABU
BAKAR1,
SITI
NATHASA
MD
BARKAWI2,
MARLIA
MOHD.
HANAFIAH1,
LEE
KHAI
ERN3
& AZHAR ABDUL HALIM1*
1Pusat Pengajian
Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2Program Kesihatan
Persekitaran, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia
Jalan Raja Muda
Abdul Aziz, 50300 Kuala Lumpur, Malaysia
3Institute for Environment and Development
(LESTARI), Universiti Kebangsaan Malaysia
43600
Bangi, Selangor Darul Ehsan, Malaysia
Received:
22 September 2015/Accepted: 4 March 2016
ABSTRAK
Keberkesanan rawatan air sisa
industri automotif ditentukan dengan menggunakan kaedah penjerapan
turus. Peratusan penyingkiran ammonia dan logam berat terpilih
telah dikaji menggunakan pasir biasa dan pasir terubah suai secara
kimia sebagai bahan penjerap. Dua model matematik iaitu Model
Thomas serta Model Yoon-Nelson telah digunakan untuk menentukan
kapasiti penjerapan maksimum ammonia. Peratusan penyingkiran ammonia
menunjukkan pasir terubah suai secara kimia mencatatkan julat
peratusan penyingkiran yang lebih tinggi iaitu 43.68% hingga 96.55%
berbanding pasir biasa yang mencatatkan julat 0% hingga 89.66%.
Logam berat zink, mangan, kromium, kuprum, arsenik, nikel, kobalt
dan ferum mencatatkan peratusan penyingkiran antara 93% hingga
100% apabila menggunakan pasir terubah suai secara kimia manakala
pasir biasa mencatatkan julat peratusan penyingkiran daripada
0.8% hingga 100%. Keputusan analisis menggunakan Model Thomas
menunjukkan kapasiti penjerapan maksimum, qo ammonia
menggunakan pasir terubah suai secara kimia (8.80 mg/g) adalah
empat kali lebih tinggi daripada pasir biasa (2.57 mg/g) manakala
masa bolos, t0.5 bahan
penjerap yang ditentukan menggunakan Model Yoon dan Nelson mencatatkan
masa tertinggi bagi pasir terubah suai secara kimia iaitu 30.18
min berbanding 9.57 min bagi pasir biasa. Kajian ini menunjukkan
peratusan penyingkiran dan kapasiti penjerapan ammonia dan logam
berat terpilih iaitu zink, mangan, kuprum, arsenik, nikel, kobalt
dan ferum lebih tinggi bagi turus pasir terubah suai secara kimia
berbanding pasir biasa.
Kata kunci: Ammonia; logam
berat; pasir; penjerapan
ABSTRACT
The effectiveness of the automotive
industry wastewater treatment has been determined by fixed-bed
adsorption study. Two mathematical models which are Thomas model
and Yoon and Nelson model were used to determine the maximum adsorption
capacity of ammonia. Percentage of removal of ammonia using chemically
modified sand indicate the removal percentage range of 43.68%
to 96.55% compared to raw sand, which indicate the range of 0%
to 89.66%. Zinc, manganese, chromium, copper, arsenic, nickel,
cobalt and iron have been recorded to give removal percentage
of 93% to 100% by using chemically modified sand compared to the
raw sand which recorded the range of removal percentage of 0.8%
to 100%. The analysis using Thomas model shows the maximum adsorption
capacity; qo of
ammonia using chemically modified sand (8.80 mg/g) was four times
higher than normal sand (2.57 mg/g). Meanwhile, the time for 50%
adsorbent to breakthrough, t0.5 determined by Yoon and Nelson
model showing that the chemically modified sand obtained the time
of 30.18 min compared to raw sand which is 9.57 min. This study
indicated that the removal percentage and the adsorption capacity
of ammonia and the selected heavy metals such as zinc, manganese,
copper, arsenic, nickel, cobalt and iron were higher in chemically
modified sand compared to pristine sand fix-bed column.
Keywords: Adsorption; ammonia; heavy metal; sand
REFERENCES
Ali Awan, M., Qazi,
I.A. & Khalid, I. 2003. Removal of heavy metal though adsorption
using sand. Journal of Environmental Science 15: 413-416.
APHA, AWWA, WPCF.
1992. Standard Methods for the Examination of Water and Wastewater.
19th ed. Washington: American Public Health Association.
Azhar, A.H. &
Aimi Shaza, C.A. 2012. Ammonia removal from an aqueous solution
using chemical surface - modified sand. Health and the Environment
Journal 3(2): 17-24.
Aziz, H.A., Adlan,
M.N. & Ariffin, K.S. 2008. Heavy metals (Cd, Pb, Zn, Ni, Cu,
and Cr(III)) removal from water in Malaysia: Post treatment by
high quality limestone. Bioresource Technology 99(6): 1578-1583.
Benjamin, M.M.,
Ronald, S.S., Robert, P.B. & Thomas, B. 1996. Sorption and
filtration of metals using iron-oxide-coated sand. Water Research
30: 2609-2620.
Camberato, J.J.
2001. Cation Exchange Capacity - Everything you want to know and
much more. South Carolina Turfgrasss Foundation News: October-December.
Chapman, M.S. 1965.
Cation exchange capacity in method of soil analysis. Series
Agronomy Part 2. pp. 891-900.
Elongavan, R.,
Philips, L. & Chandraraj, K. 2008. Biosorption of chromium
species by aquatic weeds. Journal of Hazardous Material 152:
100-112.
Environmental Quality
Act (EQA). 2012. Lembaga Penyelidikan Undang-Undang. Akta
Kualiti Alam Sekeliling 1974 (Akta 127). International Law Book
Services.
Abdul Fattah Abu
Bakar, Azhar Abdul Halim & Marlia Mohd Hanafiah. 2015. Optimization
of coagulation-flocculation process for automotive wastewater
treatment using response surface methodology. Nature Environment
and Pollution Technology 14(3): 567-572.
Gupta, V.K. &
Suhas. 2009. Application of low-cost adsorbents for dye removal
- A review. Journal of Environmental Management 90(8):
2313-2342.
Halim, A.A., Han,
K.K. & Hanafiah, M.M. 2015. Removal of methylene blue from
dye wastewater using river sand by adsorption. Nature Environment
and Pollution Technology 14(1): 89-94.
Halim, A.A., Hamidi
Abdul Aziz, Megat Azmi Megat Johari & Kamar Shah Ariffin.
2010. Comparison study of ammonia and COD adsorption on zeolite,
activated carbon and composite materials in landfill leachate
treatment. Desalination 262: 31-35.
Han, X., Wang,
W. & Ma, X. 2011. Adsorption characteristics of methylene
blue onto low cost biomass material lotus leaf. Chemical Engineering
Journal 171(1): 1-8.
Han, R.P., Lu,
Z., Zuo, W.H., Wang, D.T., Jie, S. & Yang, J.J. 2006. Removal
of copper(II) and lead(II) from aqueous solution by manganese
oxide coated sand. Journal of Hazardous Material B137:
480-488.
He, X.W., Yang,
H.M. & He, Y. 2010. Treatment of mine water high in ferum
and manganese by modified manganese sand. Mining Sciences and
Technology 20: 571-575.
Hsu, J.C., Lin,
C.J., Liao, C.H. & Chen, S.T. 2008. Removal of As(V) and As(III)
by reclaimed iron-oxide coated sands. Journal of Hazardous
Materials 153: 817-826.
Karunarathne, H.D.S.S.
& Amarasinghe, B.M.W.P.K. 2013. Fixed bed adsorption column
studies for the removal of aqueous phenol from activated carbon
prepared from sugarcane bagasse. Energy Procedia 34: 83-90.
Kavak, D. &
Öztürk, N. 2004. Adsorption of boron from aqueous solution by
sepirolite: II. Column studies. II. Illuslrararasi. Bor. Sempozyumu
23-25: 495-500.
Lancashire, R.J.
2002. Chromium Chemistry. http://wwwchem. uwimona.edu.jm/
courses/chromium.html. Accessed on 11 May 2012.
O’Reilly, A.J.
2000. Waste water treatment process selection: An industrial approach.
Trans IChemE 78: 454-464.
Rhoades, J.D. 1982.
Cation Exchange Capacity: Method of Soil Analysis Part 2.
Edisi Ke-2. Madision, Wisconsin. Agronomy Monographs 9.
Sharma, Y.C., Srivastava,
V., Weng, C.H. & Upadhyay, S.N. 2009. Removal of Cr(VI) from
wastewater by adsorption on iron nanoparticles. The Canadian
Journal of Chemical Engineering 87: 921-929.
Thomas, G.W. 1982.
Exchangeable cations. In Methods of Soil Analysis. Part
II, 2nd ed. edited by Page, A.L., Miller, R.H. & Keeney, D.R.
Madison: America Society of Agronomy and Soil Science of America.
pp. 159-165.
Thomas, H.C. 1944.
Heterogeneous ion exchange in a flowing system. J. Am. Chem.
Soc. 66(10): 1664-1666.
Tschapek, M., Wasowksi,
C. & Falasca, S. 2007. Character and change in the hydrophilic
properties of quartz sand. Journal of Plant Nutrition &
Soil Sc. 146: 295-301.
Wang, Y.F., Lina,
F. & Pang, W.Q. 2007. Ammonium exchange in aqueous solution
using Chinese natural clinoptilolite and modified zeolite, J.
Hazard. Mater. 142: 160-164.
Yoon, Y.H. &
Nelson, J.H. 1984. Application of gas adsorption kinetics-II:
A theoretical model for respirator catridge service life and its
practical application. American Industrial Hygiene Association
Journal 45: 509-516.
Zhang, C., Wang,
Y. & Yan, X. 2006. Liquid-phase adsorption: Characterization
and use of activated carbon prepared from diosgenin production
residue. Colloids and Surfaces A: Physicochemical and Engineering
Aspect 280: 9-16.
*Corresponding author;
email: azharhalim@ukm.edu.my