Sains Malaysiana 45(10)(2016):
1525–1530
Optimization of Number
of Scans for a Sparse Temporal Sampling (STS) Functional Magnetic
Resonance Imaging (fMRI)
(Pengoptimuman Bilangan
Imbasan untuk Pengimejan Resonans Magnet Kefungsian (fMRI) Pensampelan
Temporal Berjarak (STS))
AHMAD NAZLIM
YUSOFF1*,
KHAIRIAH
ABDUL
HAMID2,
HAMDI
HAMZAH3,
MAZLYFARINA
MOHAMAD1,
SITI
ZAMRATOL-MAI
SARAH
MUKARI4,5 & WAN
AHMAD
KAMIL
WAN
ABDULLAH6
1Diagnostic Imaging & Radiotherapy
Program, School of Diagnostic and Applied Health Sciences
Faculty of Health Sciences, Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur,
Malaysia
2Medical Imaging Department, School
of Health Sciences, KPJ
University College
Lot PT 17010, Persiaran Seriemas,
Kota Seriemas, 71800 Nilai, Negeri Sembilan, Malaysia
3KPJ Ipoh Specialist Hospital, 26,
Jalan Raja Dihilir, 30350 Ipoh, Perak Darul Ridzuan
Malaysia
4Audiology Program, School of Rehabilitation
Sciences, Faculty of Health Sciences
Universiti Kebangsaan Malaysia,
Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
5Institute of Ear, Hearing and Speech, Faculty of Health Science,
Universiti Kebangsaan Malaysia, Jalan Temerloh, 53200 Kuala Lumpur,
Malaysia
6Universiti Sains Malaysia, 16150
Kubang Kerian, Kelantan Darul Naim, Malaysia
Received: 8 October 2015/Accepted:
19 February 2016
ABSTRACT
High sensitivity signal detection
for a sparse temporal sampling (STS)
functional magnetic resonance imaging (fMRI) is compensated by the increase
in the number of scans (Ns) and consequently the scan time.
A long scan time would result in fatigue and restlessness in participants,
while a short scan time is undesirable for an STS-fMRI
due to insufficient Ns for averaging. The purpose of this
study was to determine the Ns practically sufficient for a
sparse fMRI study. Eighteen participants were presented with white
noise during a sparse fMRI scan. The height extent of
activation was determined via t
statistics and region of interest (ROI) based percentage of signal
change (PSC). The t statistics and PSC for
Heschl’s gyrus (HG) and superior temporal gyrus (STG)
during which the participants listened to the white noise were
calculated for different number of scans which were 6, 12, 18,
24, 30 and 36. The t statistics and PSC values calculated for the bilateral
HG and STG qualitatively indicated a
minimal change over Ns = 12 to 36. Both ROIs
showed a consistent common right lateralization of activation
for all Ns,
indicating the right-hemispheric dominance of auditory cortex
in processing white noise stimulus. It was proposed that for a
sparse fMRI study,
Ns
may practically fall between 12 and 36.
Keywords: Auditory cortex;
functional MRI; percentage of signal change; SPM;
t statistics
ABSTRAK
Pengesanan isyarat berkepekaan
tinggi bagi pengimejan resonans magnet kefungsian (fMRI)
pensampelan temporal berjarak (STS) dipampas oleh peningkatan
bilangan imbasan (Ns) dan seterusnya masa imbasan. Masa
imbasan yang lama boleh mengakibatkan kelesuan dan resah gelisah
dalam diri pesakit, manakala masa imbasan yang singkat tidak diterima
dalam STS-fMRI
disebabkan bilangan Ns yang tidak mencukupi untuk pemurataan. Tujuan kajian ini
adalah untuk menentukan Ns yang secara praktiknya mencukupi
untuk kajian fMRI berjarak. Lapan belas peserta kajian
diperdengarkan bunyi hingar putih semasa imbasan fMRI berjarak.
Takat tinggi pengaktifan ditentukan melalui statistik t dan peratus perubahan isyarat (PSC)
berasaskan kawasan diminati (ROI). Statistik t dan PSC
untuk girus Heschl (HG) dan girus temporal superior (STG)
semasa peserta kajian mendengar hingar putih dihitung untuk bilangan
imbasan berbeza iaitu 6, 12, 18, 24, 30 dan 36. Statistik t
dan PSC yang
dihitung untuk HG dan STG bilateral
secara kualitatif menunjukkan perubahan minimum merentasi Ns =
12 ke 36. Kedua-dua ROI memperlihatkan pengaktifan lateralisasi
kanan biasa yang tekal untuk semua Ns, menunjukkan
kedominanan hemisfera kanan bagi korteks auditori dalam memproses
stimulus hingar putih. Dicadangkan bahawa untuk kajian fMRI berjarak,
Ns
secara praktiknya boleh mengambil nilai antara 12
dan 36.
Kata kunci: Korteks auditori; MRI
kefungsian; peratus perubahan isyarat; SPM;
statistik t
REFERENCES
Alcock,
K.J., Wade, D., Anslow, P. & Passingham, R.E. 2000. Pitch
and timing abilities in adult left-hemisphere-dysphasic and right-hemisphere-damaged
subjects. Brain and Language 75(1):
47-65.
Anderson,
B., Southern, B.D. & Powers, R.E. 1999. Anatomic asymmetries
of the posterior superior temporal lobes: A postmortem study.
Neuropsychiatry Neuropsychol. Behav. Neurol. 12(4): 247-254.
Bandettini,
P.A., Davis, T.L., Kwong, K.K., Jiang, A., Baker, J.R., Belliveau,
J.W., Weisskopf, R.M. & Rosen, B.R. 1995. FMRI and PET demonstrate
sustained blood oxygenation and flow enhancement during extended
visual stimulation durations. Proceedings of the Society of
Magnetic Resonance, Nice. p. 453.
Belin,
P., Zatorre, R.J., Hoge, R., Evans, A.C. & Pike, B. 1999.
Event-related fMRI of the auditory cortex. Neuroimage 10(4):
417-429.
Brett,
M., Johnsrude, I.S. & Owen, A.M. 2002. The problem of functional
localization in the human brain. Nat. Rev. Neurosci. 3(3):
243-249.
Gaab, N., Gabrieli, J.D. & Glover, G.H. 2007. Assessing the influence
of scanner background noise on auditory processing. I. An fMRI
study comparing three experimental designs with varying degrees
of scanner noise. Hum. Brain Mapp. 28(8): 703-720.
Gaab, N., Gaser, C., Zaehle, T.,
Jancke, L. & Schlaug, G. 2003. Functional anatomy of pitch
memory--an fMRI study with sparse temporal sampling. Neuroimage
19(4): 1417-1426.
Gockel, H., Moore, B.C.J., Plack,
C.J. & Carlyon, R.P. 2006. Effect of noise on the detectability
and fundamental frequency discrimination of complex tones. J.
Acoust. Soc. Am. 120(2): 957-965.
Hall, D.A., Haggard, M.P., Akeroyd,
M.A., Palmer, A.R., Summerfield, A.Q., Elliott, M.R., Gurney,
E.M. & Bowtell, R.W. 1999. “Sparse” temporal sampling in auditory
fMRI. Hum. Brain Mapp. 7(3): 213-223.
Hamid, K., Yusoff, A., Rahman, M.,
Mohamad, M. & Hamid, A. 2012. Effective connectivity between
superior temporal gyrus and Heschl’s gyrus during white noise
listening: Linear versus non-linear models. Biomed. Imaging
Interv. J. 8(2): e13.
Hickok, G. 1997. Functional MR imaging
during auditory word perception: A single trial presentation paradigm.
Brain and Language 58: 197-201.
Hwang, J.H., Wu, C.W., Chou, P.H.,
Liu, T.C. & Chen, J.H. 2005. Hemispheric difference in activation
patterns of human auditory-associated cortex: An FMRI study. ORL
J. Otorhinolaryngol. Relat. Spec. 67(4): 242-246.
Jamison, H.L., Watkins, K.E., Bishop,
D.V. & Matthews, P.M. 2006. Hemispheric specialization for
processing auditory nonspeech stimuli. Cereb. Cortex 16(9):
1266-1275.
Maldjian, J.A., Laurienti, P.J.,
Kraft, R.A. & Burdette, J.H. 2003. An automated method for
neuroanatomic and cytoarchitectonic atlas-based interrogation
of fMRI data sets. Neuroimage 19(3): 1233-1239.
Manan, H.A., Franz, E.A., Yusoff,
A.N. & Mukari, S.Z.M.S. 2012. Hippocampal-cerebellar involvement
in enhancement of performance in word-based BRT with the presence
of background noise: An initial fMRI study. Psychology and
Neuroscience 5(2): 247-256.
Murayama, J., Kashiwagi, T., Kashiwagi,
A. & Mimura, M. 2004. Impaired pitch production and preserved
rhythm production in a right brain-damaged patient with amusia.
Brain Cogn. 56(1): 36-42.
Patterson, R.D., Uppenkamp, S.,
Johnsrude, I.S. & Griffiths, T.D. 2002. The processing of
temporal pitch and melody information in auditory cortex. Neuron.
36(4): 767-776.
Yusoff, A.N., Abdul Hamid, K., Mohamad,
M., Abdullah, A., Abdul Hamid, H. & Mukari, S.Z.M. 2013. Assessing
human cortical activation and network during pitch discrimination
task in quiet and in noisy background. Modern Applied Science
7(10): 42-59.
Yusoff, A.N., Mohamad, M., Hamid,
K.A., Abd Hamid, A.I. & Mukari, S.Z.M.S. 2011. Acquisition,
analyses and interpretation of fMRI data: A study on the effective
connectivity in human primary auditory cortices. Sains Malaysiana
40(6): 665-678.
Zatorre, R.J., Belin, P. & Penhune,
V.B. 2002. Structure and function of auditory cortex: Music and
speech. Trends Cogn. Sci. 6(1): 37-46.
*Corresponding author;
email: nazlimtrw@ukm.edu.my