Sains Malaysiana 45(10)(2016): 1551–1556

 

Pressure Dependence of Structural, Elastic and Electronic Properties of α-Al2O3: First-principles Calculations

(Tekanan Pergantungan kepada Sifat Struktur, Anjal dan Elektronik α -Al2O3: Pengiraan Prinsip-Pertama)

 

QI-JUN LIU1,2* & ZHENG-TANG LIU3

 

1School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031

People’s Republic of China

 

2Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities)

of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031

People’s Republic of China

 

3State Key Laboratory of Solidification Processing, Northwestern Polytechnical University

Xi’an 710072 People’s Republic of China

 

Received: 25 August 2013/Accepted: 3 February 2016

 

ABSTRACT

The first-principles calculations were performed to investigate the structural, elastic, mechanical and electronic properties of α-Al2O3 at applied pressure up to 50 GPa. The obtained ground state properties were in agreement with previous experimental and theoretical data. The elastic constants, bulk modulus, shear modulus, Young’s modulus and anisotropy have been calculated as pressure increased. It was found that there was a brittle-ductile transition at about 23.2 GPa. The increasing ratio Ba /Bc with pressure indicates the weakening chemical bonding and the increasing anisotropy in this compound. The electronic structures were also calculated, which shows that band gaps increase monotonically. The population analysis showed the charge transfer was mainly between Al-3s and O-2p as pressure increased.

 

Keywords: Density functional theory; elastic properties; electronic structure; α-Al2O3

 

ABSTRAK

Pengiraan prinsip-pertama dijalankan untuk mengkaji sifat struktur, anjal, mekanik dan elektronik α-Al2O3 pada tekanan yang dikenakan sehingga 50 GPa. Sifat keadaan tanah yang diperoleh adalah sama dengan data uji kaji dan teori yang terdahulu. Pemalar anjal, modulus pukal, modulus ricih, modulus Young dan anisotrofi telah dihitung apabila tekanan meningkat. Didapati bahawa terdapat peralihan rapuh-mulur pada 23.2 GPa. Peningkatan nisbah Ba /Bc dengan tekanan menunjukkan ikatan kimia yang semakin lemah dan anisotrofi yang semakin meningkat dalam sebatian ini. Struktur elektronik juga dihitung yang menunjukkan bahawa jurang jalur meningkat secara senada. Analisis penduduk menunjukkan pemindahan caj antara Al-3s dan O-2p apabila tekanan meningkat.

 

Kata kunci: Sifat anjal; struktur elektronik; teori fungsi ketumpatan; α-Al2O3


REFERENCES

Ahuja, R., Osorio-Guillen, J.M., Souza de Almeida, J., Holm, B., Ching, W.Y. & Johansson, B. 2004. Electronic and optical properties of γ-Al2O3 from ab initio theory. J. Phys.: Condens. Matter. 16: 2891-2900.

Asahi, R., Taga, Y., Mannstadt, W. & Freeman, A.J. 2000. Electronic and optical properties of anatase TiO2. Phys. Rev. B 61: 7459-7465.

Born, M. & Huang, K. 1982. Dynamical Theory and Experiment I. Berlin: Springer-Verlag.

Chen, J., Xu, Y., Chen, D.Q. & Zhang, J.L. 2008. Ab initio study of a Y-doped Σ31 grain boundary in alumina. Sci. China Ser. G 38: 1066-1074.

Chen, H.S. 1996. Anisotropy of Elasticity About Metal. Beijing: Metallurgy Industry Press.

Copel, M., Cartier, E., Gusev, E.P., Guha, S., Bojarczuk, N. & Poppeller, M. 2001. Robustness of ultrathin aluminum oxide dielectrics on Si(001). Appl. Phys. Lett. 78: 2670-2672.

Duan, W., Karki, B.B. & Wentzcovitch, R.M. 1999. High-pressure elasticity of alumina studied by first principles. American Mineralogist 84: 1961-1966.

Duan, W., Wentzcovitch, R.M. & Thomson, K.T. 1998. First-principles study of high-pressure alumina polymorphs. Phys. Rev. B 57: 10363-10369.

d’Amour, H., Schiferl, D., Denner, W., Schulz, H. & Holzapfel, W.B. 1978. High-pressure single-   crystal structure determinations for ruby up to 90 kbar using an automatic diffractor. J. Appl.             Phys. 49: 4411-4416.

Fast, L., Wills, J.M., Johansson, B. & Eriksson, O. 1995. Elastic constants of hexagonal transition metals. Theory Phys. Rev. B 51: 17431-17438.

Fernández, E.M., Borstel, G., Soler, J.M. & Balbás, L.C. 2003a. Study of (Al2O3)n(Ox) clusters with n ≤ 16 and x = 0, 1, 2 from first principles calculations. Eur. Phys. Journal D 24: 245-248.

Fernández, E.M., Balbás, L.C., Borstel, G. & Soler, J.M. 2003b. First principles calculation of the geometric and electronic structure of (Al2O3)n(Ox) clusters with n<15 and ×=0, 1, 2. Thin Solid Films 428: 206-210.

French, R.H. 1990. Electronic band structure of Al2O3, with comparison to AlON and AlN. J. Am. Ceram. Soc. 73: 477- 489.

Gieske, J.H. & Barsch, G.R. 1968. Pressure dependence of the elastic constants of single crystalline aluminum oxide. Physica Status Solidi 29: 121-131.

Gladden, J.R., So, J.H., Maynard, J.D., Saxe, P.W. & Le Page, Y. 2004. Reconciliation of ab initio theory and experimental elastic properties of Al2O3. Appl. Phys. Lett. 85: 392-394.

Gusev, E.P., Cartier, E., Buchanan, D.A., Gribelyuk, M., Copel, M., Okorn-Schmidt, H. & D’Emic, C. 2001. Ultrathin high-K metal oxides on silicon: Processing, characterization and integration issues. Microelectron. Eng. 59: 341-349.

Haverty, M., Kawamoto, A., Cho, K. & Dutton, R. 2002. First-principles study of transition-metal aluminates as high-k gate dielectrics. Appl. Phys. Lett. 80: 2669-2671.

Hill, R. 1952. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London 65: 349-354.

Hosseini, S.M., Rahnamaye Aliabad, H.A. & Kompany, A. 2005a. Influence of La on electronic structure of α-Al2O3 high k-gate from first principles. Ceram. Int. 31: 671-675.

Hosseini, S.M., Rahnamaye Aliabad, H.A. & Kompany, A. 2005b. First-principles study of the optical properties of pure α-Al2O3 and La aluminates. Eur. Phys. J. B 43: 439-444.

Hovis, D.B., Reddy, A. & Heuer, A.H. 2006. X-ray elastic constants for α-Al2O3. Appl. Phys. Lett. 88: 131910.

Kruse, C., Finnis, M.W., Lin, J.S., Payne, M.C., Milman, V.Y., Vita, A.D. & Gillan, M.J. 1996. First-principles study of the atomistic and electronic structure of the niobium-α-alumina (0001) interface. Phil. Mag. Lett. 73: 377-383.

Liao, C.C., Chin, A. & Tsai, C. 1999. Electrical characterization of Al2O3 on Si from thermally oxidized AlAs and Al. J. Crystal Growth 201-202: 652-655.

Limarga, A.M., Widjaja, S. & Yip, T.H. 2005. Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings. Surf. Coat. Technol. 197: 93-102.

Limarga, A.M., Widjaja, S., Yip, T.H. & Teh, L.K. 2002. Modeling of the effect of Al2O3 interlayer on residual stress due to oxide scale in thermal barrier coatings. Surf. Coat. Technol. 153: 16-24.

Lee, W.E. & Lagerlof, K.P.D. 1985. Structural and electron diffraction data for sapphire (α-Al2O3). J. Electron. Microsc. Tech. 2: 247-258.

Matsunaga, K., Tanaka, T., Yamamoto, T. & Ikuhara, Y. 2003. First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68: 085110.

Murnaghan, F.D. 1944. The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30: 244-247.

Ollivier, B., Retoux, R., Lacorre, P., Massiot, D. & Férey, G. 1997. Crystal structure of k-alumina: An X-ray powder diraction, TEM and NMR study. J. Mater. Chem. 7: 1049-1056.

Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. & Fiolhais, C. 1992. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46: 6671-6687.

Pugh, S.F. 1954. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45: 823-843.

Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J. & Eriksson, O. 1998. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84: 4891-4904.

Reuss, A. 1929. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9: 49-58.

Ru, Q. & Qiu, X.L. 2009. The electronic structure and mechanical property of alpha Al2O3 by first principles calculation. Mater. Res. Application 3: 162-167.

Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. & Payne, M.C. 2002. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14: 2717-2744.

Shang, S., Wang, Y. & Liu, Z.K. 2007. First-principles elastic constants of α- and Ө-Al2O3. Appl. Phys. Lett. 90: 101909.

Shanmugavelayutham, G., Yano, S. & Kobayashi, A. 2006. Microstructural characterization and properties of ZrO2/ Al2O3 thermal barrier coatings by gas tunnel-type plasma spraying. Vacuum 11-12: 1336-1340.

Shi, S., Tanaka, S. & Kohyama, M. 2006. First-principles study on the adhesion nature of the α-Al2O3(0001)/Ni(111) interface. Modelling Simul. Mater. Sci. Eng. 14: S21-S28.

Sin’ko, G.V. & Smirnov, N.A. 2002. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys.: Condens. Matter 14: 6989-7005.

Tian, S. 2004. Materials Physical Properties. Beijing: Beijing University of Aeronautics and Astronautics Press.

Vali, R. & Hosseini, S.M. 2004. First-principles study of structural, dynamical, and dielectric properties of κ-Al2O3. Comput. Mater. Sci. 29: 138-144.

Voigt, W. 1928. Lehrbuch der kristallphysik. Leipzig: Teubner.

Widjaja, S., Limarga, A.M. & Yip, T.H. 2002. Oxidation behavior of a plasma-sprayed functionally graded ZrO2/Al2O3 thermal barrier coating. Mater. Lett. 57: 628-634.

Yang, C., Feng, Y.F. & Yu, Y. 2009. Dynamics study of the adsorption and diffusion in early growth stage of AlN/α- Al2O3(0001) films. Acta Phys. Sinica 58: 3553-3559.

Yang, C., Yu, Y., Li, Y.R. & Liu, Y.H. 2004. The relaxation of α-Al2O3(0001) surface impacts on its electronic states. Chinese J. Chem. Phys. 17: 537-542.

Yu, Q.H., Zhou, C.G., Zhang, H.Y. & Zhao, F. 2010. Thermal stability of nanostructured 13 wt% Al2O3-8 wt% Y2O3- ZrO2 thermal barrier coatings. J. Eur. Ceram. Soc. 30: 889-897.

Zhukovskii, Yu.F., Kotomin, E.A., Herschend, B., Hermansson, K. & Jacobs, P.W.M. 2001. A first-principles study of the Ag/α-Al2O3(0001) interface. Int. J. Mol. Sci. 2: 271-280.

Zhu, J., Yu, J-X., Wang, Y-J., Chen, X-R. & Jing, F-Q. 2008 First-principles calculations for elastic properties of rutile TiO2 under pressure. Chin. Phys. B 17: 2216-2221.

 

*Corresponding author; email: qijunliu@home.swjtu.edu.cn

 

 

 

 

 

previous