Sains Malaysiana 45(10)(2016): 1579–1587
A New Model to Predict the Unsteady
Production of Fractured Horizontal Wells
(Model Baharu untuk
Meramalkan Pengeluaran
tak Menentu Telaga Mendatar
yang Retak)
FANHUI-ZENG*,
XIAOZHAO-CHENG,
JIANCHUN-GUO,
CHUAN
LONG
& YUBIAO-KE
State Key Laboratory
of Oil and Gas Geology and Exploration, Southwest Petroleum University
610500, Chengdu,
P.R. China
Received: 2 July
2015/Accepted: 7 March 2016
ABSTRACT
Based on the hydraulic fracture
width gradually narrows along the fracture length, with consideration
of the mutual influences of fracture, non-uniform inflow of fractures
segments and variable mass flow in the fracture comprehensively,
a spatial separation method and time separation method were used
to establish fracture horizontal well’s dynamic coupling model of
reservoir seepage and fracture flow. The results showed that the
calculation productivity of variable width model is higher than
that of the fixed width model, while the difference becomes smaller
as time increase. Due to mutual interference of the fractures, the
production of outer fracture is higher than that of the inner fracture.
When the dimensionless fracture conductivity is 0.1, the middle segment
of the fracture dominates the productivity and local peak emerges
near the horizontal well. The flow in the fracture is with the ‘double
U’ type distribution. As the dimensionless fracture
conductivity increase, the fractures productivity mainly through
the tips and the flow in the fractures with the ‘U’ type distribution.
Using the established fracture width variable productivity prediction
model, one can achieve the quantitative optimization of fracture
shape.
Keywords: Fractured horizontal
well; fracture shape quantitative optimization; flux distribution;
unsteady productivity; variable fracture width
ABSTRAK
Berdasarkan lebar retak hidraulik
beransur-ansur sempit
sepanjang kepanjangan retak, dengan pertimbangan
retak pengaruh
bersalingan, aliran masuk segmen retak
tak seragam
dan pemboleh ubah
aliran jisim
dalam retak secara
menyeluruh, kaedah
pemisahan reruang dan masa telah digunakan untuk menubuhkan model gandingan dinamik telaga melintang retak aliran takungan tirisan dan retak.
Keputusan
kajian menunjukkan bahawa produktiviti pengiraan model kelebaran berubah-ubah adalah lebih tinggi daripada
model dengan kelebaran
tetap, namun perbezaan
menjadi lebih
kecil dengan peningkatan
masa. Disebabkan keretakan gangguan
itu bersalingan,
penghasilan retak bahagian luar adalah
lebih tinggi
daripada retak dalaman. Apabila konduktiviti retak
tanpa dimensi
adalah 0.1, segmen tengah retak
menguasai produktiviti
dan puncak tempatan
muncul berhampiran
telaga mendatar. Aliran dalam retakan adalah
dengan taburan
jenis ‘dua U’. Semasa konduktiviti retak tanpa dimensi meningkat,
produktiviti retak
terutamanya menerusi aliran hujung dan
dalam retak
bersama dengan taburan jenis ‘U’. Dengan menggunakan model peramalan produktiviti retak lebar pemboleh ubah yang ditubuhkan, pengoptimuman kuantitatif bentuk retak boleh
dicapai.
Kata kunci: Kelebaran
retak pemboleh
ubah; pengoptimuman kuantitatif bentuk retak; produktiviti tak menentu; taburan fluks;
telaga mendatar yang retak
REFERENCES
Al Kobaisi, M., Ozkan,
E. & Kazemi, H. 2006. A hybrid numerical/analytical model of a finite conductivity vertical
fracture intercepted by a horizontal well. SPE Reservoir
Evaluation & Engineering 9: 345-355.
Cinco, L.H. & Samaniego, V.F. 1981. Transient pressure analysis for fractured wells. Journal
of Petroleum Technology 33: 1749-1766.
Cinco-L., H., Samaniego-V., F. & Dominguez
A., N. 1978. Transient pressure behavior
for a well with a finite-conductivity vertical fracture.
Old SPE Journal 18(4): 253-264.
Giger, F.M., Reiss, L.H. & Jourdan, A.P. 1984. The reservoir engineering aspects of horizontal drilling. In SPE Annual Technical Conference and Exhibition. Texas:
Society of Petroleum Engineers.
Gringarten, A.
& Raghavan, R. 1975. Applied pressure analysis for fractured wells. Journal of
Petroleum Technology 27: 887-892.
Guo, B. & Schechter,
D. 1999. A simple and rigorous IPR equation for vertical
and horizontal wells intersecting long fractures. PETSOC-99-07-05.
Journal of Canadian Petroleum Technology 38(7).
Joshi
S. 1988. Augmentation of well productivity with
slant and horizontal wells. Journal of Petroleum Technology
40(6): 729-739.
Joshi,
S. 1987. A review of horizontal well and drainhole
technology. SPE Annual Technical Conference
and Exhibition. Texas: Society of Petroleum Engineers.
Larsen, L. & Hegre, T. 1994. Pressure transient analysis of multifractured
horizontal wells. SPE Annual Technical
Conference and Exhibition, New Orleans, Louisiana, 25-28 September.
Larsen, L. & Hegre, T. 1991. Pressure-transient behavior of horizontal wells with finite-conductivity
vertical fractures. International Arctic Technology Conference,
Anchorage, Alaska, 29-31 May.
Li, Z.J., Pu, X.L., Wang, G., Cheng, Y. & Su, Y. 2013. A novel low-fluorescence anti-sloughing agent for a drilling fluid
system and its mechanism analysis. Natural Gas Industry
33: 97-101.
Mukherjee, H. & Economides, M. 1991. A parametric comparison of horizontal and vertical well performance.
SPE Formation Evaluation 6(2): 209-216.
Prats,
M. 1961. Effect of vertical fractures on reservoir behavior-incompressible
fluid case. Society of Petroleum Engineers Journal 1(2):
105-118.
Raghavan, R., Cheng, C. & Bijan, A. 1997. An analysis of horizontal wells intercepted
by multiple fractures. SPE Journal 2(3): 235-245.
Raghavan, R. & Joshi,
S. 1993. Productivity of multiple drainholes
or fractured horizontal wells. SPE Formation Evaluation
8(1): 11-16.
Soliman, M.Y., Hunt, J.L.
& El Rabaa, A.M. 1990. Fracturing
aspects of horizontal wells. Journal of Petroleum Technology
42(8): 966-973.
Sun,
H., Yao, J., Lian, P.Q., Fan, D.Y. &
Sun, Z.X. 2012.
A transient reservoir/wellbore coupling model for fractured horizontal
wells with consideration of fluid inflow from base rocks into wellbores.
Acta Petrolei Sinica 33(1): 117-122.
van Eekelen, H.A.M. 1982. Hydraulic fracture geometry: Fracture
containment in layered formations. Old SPE Journal 22(3):
341-349.
Wang,
Z.M., Jin, H. & Wei, J.G. 2009. Interpretation of the coupling model between fracture variable mass
flow and reservoir flow for fractured horizontal wells. Journal
of Hydrodynamics 24: 172-179.
Wei,
Y. & Economides, M.J. 2005. Transverse hydraulic
fractures from a horizontal well. SPE
Annual Technical Conference and Exhibition, Dallas, Texas, 9-12
October.
Xiao,
Y., Wang, T.F., Zhao, J.Z., Hu, Y.Q. & Luo, Y. 2009. Computational
model of total stress filed while multiple fracturing. Oil Drilling
& Production Technology 2009(3): 90-93.
Yuan,
Y.Z., Zhang, L.H., Wang, J. & Pu, Y.W. 2009. A binomial deliverability
equation for horizontal gas wells in formations with nonlinear seepage
flow features. Oil & Gas Geology 2009(1): 122-126.
Zeng,
F. & Zhao, G. 2010. The optimal hydraulic fracture geometry
under non-Darcy flow effects. Journal of Petroleum Science
and Engineering 72(1-2): 143-157.
*Corresponding author; email: zengfanhui023024@126.com
|