Sains Malaysiana 45(10)(2016): 1579–1587

 

A New Model to Predict the Unsteady Production of Fractured Horizontal Wells

(Model Baharu untuk Meramalkan Pengeluaran tak Menentu Telaga Mendatar yang Retak)

 

FANHUI-ZENG*, XIAOZHAO-CHENG, JIANCHUN-GUO, CHUAN LONG & YUBIAO-KE

 

State Key Laboratory of Oil and Gas Geology and Exploration, Southwest Petroleum University

610500, Chengdu, P.R. China

 

Received: 2 July 2015/Accepted: 7 March 2016

 

ABSTRACT

Based on the hydraulic fracture width gradually narrows along the fracture length, with consideration of the mutual influences of fracture, non-uniform inflow of fractures segments and variable mass flow in the fracture comprehensively, a spatial separation method and time separation method were used to establish fracture horizontal well’s dynamic coupling model of reservoir seepage and fracture flow. The results showed that the calculation productivity of variable width model is higher than that of the fixed width model, while the difference becomes smaller as time increase. Due to mutual interference of the fractures, the production of outer fracture is higher than that of the inner fracture. When the dimensionless fracture conductivity is 0.1, the middle segment of the fracture dominates the productivity and local peak emerges near the horizontal well. The flow in the fracture is with the ‘double U’ type distribution. As the dimensionless fracture conductivity increase, the fractures productivity mainly through the tips and the flow in the fractures with the ‘U’ type distribution. Using the established fracture width variable productivity prediction model, one can achieve the quantitative optimization of fracture shape.

 

Keywords: Fractured horizontal well; fracture shape quantitative optimization; flux distribution; unsteady productivity; variable fracture width

 

 

ABSTRAK

Berdasarkan lebar retak hidraulik beransur-ansur sempit sepanjang kepanjangan retak, dengan pertimbangan retak pengaruh bersalingan, aliran masuk segmen retak tak seragam dan pemboleh ubah aliran jisim dalam retak secara menyeluruh, kaedah pemisahan reruang dan masa telah digunakan untuk menubuhkan model gandingan dinamik telaga melintang retak aliran takungan tirisan dan retak. Keputusan kajian menunjukkan bahawa produktiviti pengiraan model kelebaran berubah-ubah adalah lebih tinggi daripada model dengan kelebaran tetap, namun perbezaan menjadi lebih kecil dengan peningkatan masa. Disebabkan keretakan gangguan itu bersalingan, penghasilan retak bahagian luar adalah lebih tinggi daripada retak dalaman. Apabila konduktiviti retak tanpa dimensi adalah 0.1, segmen tengah retak menguasai produktiviti dan puncak tempatan muncul berhampiran telaga mendatar. Aliran dalam retakan adalah dengan taburan jenisdua U’. Semasa konduktiviti retak tanpa dimensi meningkat, produktiviti retak terutamanya menerusi aliran hujung dan dalam retak bersama dengan taburan jenis ‘U’. Dengan menggunakan model peramalan produktiviti retak lebar pemboleh ubah yang ditubuhkan, pengoptimuman kuantitatif bentuk retak boleh dicapai.

 

Kata kunci: Kelebaran retak pemboleh ubah; pengoptimuman kuantitatif bentuk retak; produktiviti tak menentu; taburan fluks; telaga mendatar yang retak

REFERENCES

Al Kobaisi, M., Ozkan, E. & Kazemi, H. 2006. A hybrid numerical/analytical model of a finite conductivity vertical fracture intercepted by a horizontal well. SPE Reservoir Evaluation & Engineering 9: 345-355.

Cinco, L.H. & Samaniego, V.F. 1981. Transient pressure analysis for fractured wells. Journal of Petroleum Technology 33: 1749-1766.

Cinco-L., H., Samaniego-V., F. & Dominguez A., N. 1978. Transient pressure behavior for a well with a finite-conductivity vertical fracture. Old SPE Journal 18(4): 253-264.

Giger, F.M., Reiss, L.H. & Jourdan, A.P. 1984. The reservoir engineering aspects of horizontal drilling. In SPE Annual Technical Conference and Exhibition. Texas: Society of Petroleum Engineers.

Gringarten, A. & Raghavan, R. 1975. Applied pressure analysis for fractured wells. Journal of Petroleum Technology 27: 887-892.

Guo, B. & Schechter, D. 1999. A simple and rigorous IPR equation for vertical and horizontal wells intersecting long fractures. PETSOC-99-07-05. Journal of Canadian Petroleum Technology 38(7).

Joshi S. 1988. Augmentation of well productivity with slant and horizontal wells. Journal of Petroleum Technology 40(6): 729-739.

Joshi, S. 1987. A review of horizontal well and drainhole technology. SPE Annual Technical Conference and Exhibition. Texas: Society of Petroleum Engineers.

Larsen, L. & Hegre, T. 1994. Pressure transient analysis of multifractured horizontal wells. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 25-28 September.

Larsen, L. & Hegre, T. 1991. Pressure-transient behavior of horizontal wells with finite-conductivity vertical fractures. International Arctic Technology Conference, Anchorage, Alaska, 29-31 May.

Li, Z.J., Pu, X.L., Wang, G., Cheng, Y. & Su, Y. 2013. A novel low-fluorescence anti-sloughing agent for a drilling fluid system and its mechanism analysis. Natural Gas Industry 33: 97-101.

Mukherjee, H. & Economides, M. 1991. A parametric comparison of horizontal and vertical well performance. SPE Formation Evaluation 6(2): 209-216.

Prats, M. 1961. Effect of vertical fractures on reservoir behavior-incompressible fluid case. Society of Petroleum Engineers Journal 1(2): 105-118.

Raghavan, R., Cheng, C. & Bijan, A. 1997. An analysis of horizontal wells intercepted by multiple fractures. SPE Journal 2(3): 235-245.

Raghavan, R. & Joshi, S. 1993. Productivity of multiple drainholes or fractured horizontal wells. SPE Formation Evaluation 8(1): 11-16.

Soliman, M.Y., Hunt, J.L. & El Rabaa, A.M. 1990. Fracturing aspects of horizontal wells. Journal of Petroleum Technology 42(8): 966-973.

Sun, H., Yao, J., Lian, P.Q., Fan, D.Y. & Sun, Z.X. 2012. A transient reservoir/wellbore coupling model for fractured horizontal wells with consideration of fluid inflow from base rocks into wellbores. Acta Petrolei Sinica 33(1): 117-122.

van Eekelen, H.A.M. 1982. Hydraulic fracture geometry: Fracture containment in layered formations. Old SPE Journal 22(3): 341-349.

Wang, Z.M., Jin, H. & Wei, J.G. 2009. Interpretation of the coupling model between fracture variable mass flow and reservoir flow for fractured horizontal wells. Journal of Hydrodynamics 24: 172-179.

Wei, Y. & Economides, M.J. 2005. Transverse hydraulic fractures from a horizontal well. SPE Annual Technical Conference and Exhibition, Dallas, Texas, 9-12 October.

Xiao, Y., Wang, T.F., Zhao, J.Z., Hu, Y.Q. & Luo, Y. 2009. Computational model of total stress filed while multiple fracturing. Oil Drilling & Production Technology 2009(3): 90-93.

Yuan, Y.Z., Zhang, L.H., Wang, J. & Pu, Y.W. 2009. A binomial deliverability equation for horizontal gas wells in formations with nonlinear seepage flow features. Oil & Gas Geology 2009(1): 122-126.

Zeng, F. & Zhao, G. 2010. The optimal hydraulic fracture geometry under non-Darcy flow effects. Journal of Petroleum Science and Engineering 72(1-2): 143-157.

 

 

*Corresponding author; email: zengfanhui023024@126.com

 

 

 

 

 

previous