Sains Malaysiana 45(11)(2016):
1649–1653
Chemical and Thermal
Properties of Purified Kenaf Core and Oil Palm Empty Fruit Bunch
Lignin
(Kajian Kimia dan Terma
Lignin Tulen Teras Kenaf dan Serabut Tandan Kosong Kelapa Sawit)
SHARIFAH NURUL
AIN
SYED
HASHIM,
SARANI
ZAKARIA*,
CHIN
HUA
CHIA,
FEI LING
PUA
& SHARIFAH NABIHAH SYED
JAAFAR
School
of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia
43600
Bangi, Selangor Darul Ehsan, Malaysia
Received:
28 March 2015/Accepted: 26 January 2016
ABSTRACT
Chemical and thermal properties
of pure lignin are depending on the plant origin, extraction method
and type of lignocellulosic. In this study, lignin from oil palm
empty fruit bunch (EFB) and kenaf core were recovered from soda black liquor
by two steps of acid precipitation with hydrochloric acid and
followed by soxhlet with n-hexane. The XRD analysis of purified EFB
lignin (EAL)
and purified kenaf core lignin (KAL) exhibited amorphous properties,
similar to the standard alkali lignin (SAL).
The FTIR and Raman spectra showed that all samples consist of
HGS
unit. In FTIR, the syringyl unit is assigned at
(1125 cm-1), (1327 and 1121 cm-1)
and (1326 and 1117 cm-1) meanwhile the guaicyl unit
is assigned at (1263, 1212 and 1028 cm-1),
(1271, 1217 and 1028 cm-1) and (1270, 1211 and
1030 cm-1) for SAL, EAL and
KAL,
respectively. The peak around 1160 cm-1 represents
C-O stretching of conjugated ester group present in HGS lignin.
As for Raman, the HGS unit exists in the range of 1100-1400
cm-1. Among the purified samples,
the TGA result showed that KAL has
a better thermal stability with the residue of 36.49% and higher
Tg value
which is 152.69°C.
Keywords: Acid precipitation;
black liquor; HGS unit; soda lignin; soxhlet
extraction
ABSTRAK
Sifat kimia dan terma lignin tulen bergantung kepada tumbuhan asal,
kaedah pengekstrakan dan jenis lignoselulosa. Dalam kajian ini,
lignin daripada serabut tandan kosong kelapa sawit (EFB)
dan teras kenaf telah diasingkan daripada likor hitam soda dengan
dua peringkat pemendakan asid menggunakan asid hidroklorik dan
diikuti proses penulenan dengan n-heksana dalam sistem soxhlet.
Berdasarkan kepada difraktogram sinar-X, didapati sampel lignin
tulen EFB(EAL)
dan sampel lignin kenaf teras (KAL) mempamerkan sifat amorfus sama seperti
sampel SAL. Pencirian FTIR dan
Raman pula membuktikan sampel lignin mempunyai kesemua unit monomer
HGS.
Dalam analisis FTIR, unit siringil ditemui pada (1125
cm-1), (1327 dan 1121 cm-1)
dan (1326 dan 1117 cm-1) manakala unit guaiasil ditemui
pada (1263, 1212 dan 1028 cm-1), (1271, 1217 dan 1028
cm-1) dan (1270, 1211 dan 1030 cm-1)
masing-masing bagi SAL, EAL dan
KAL.
Puncak sekitar 1160 cm-1 mewakili
regangan C-O bagi kumpulan ester berkonjugat yang hadir dalam
lignin HGS.
Bagi analisis Raman, unit HGS hadir dalam julat 1100-1400 cm-1.
Antara sampel yang ditulenkan, KAL mempunyai kestabilan terma
yang baik dengan baki 36.49% dan nilai Tg yang tinggi iaitu 152.69°C.
Kata kunci: Lignin soda; likor hitam; pemendakan asid; pengasingan
soxhlet; unit HGS
REFERENCES
Abdullah,
N., Sulaiman, F. & Gerhauser, F. 2011. Characterisation of
oil palm empty fruit bunches for fuel application. Journal
of Physical Science 22(1): 1-24.
Akbarzadeh,
E., Mohamad Ibrahim, M.N. & Rahim, A.A. 2011. Corrosion inhibition
of mild steel in near neutral solution by Kraft and soda lignins
extracted from oil palm empty fruit bunch. Int. J. Electrochem.
Sci. 6: 5396-5416.
Baker,
D.A. & Rials, T.G. 2013. Recent advances in low-cost carbon
fiber manufacture from lignin. Journal of Applied Polymer Science
130(2): 713-728.
Carlos, R.M. & Khang,
D.B. 2008. Characterization of biomass energy projects in Southeast
Asia. Biomass and Bioenergy 32: 525-532.
Dence, C.W. & Lin, S.Y. 1992. Methods in Lignin Chemistry.
Springer-Verlag: Berlin Heidelberg.
Fitigau, I.F.,
Peter, F. & Boeriu, C.G. 2013. Structural analysis of lignin
from different sources. International Science Index 7(4):
98-103.
Garcia, A., Alriols,
M.G., Spigno, G. & Labidi, J. 2012. Lignin as natural radical
scavanger. Effect of the obtaining and purification processes
on the antioxidant behaviour of lignin. Biochemical Engineering
Journal 67: 173-185.
Garcia, A., Toledano,
A., Serrano, L., Egues, I., Gonzalez, M., Marin, F. & Labidi,
J. 2009. Characterization of lignins obtained by selective precepitation.
Separation and Purification Technology 68: 193-198.
Geronikaki, A.A.,
Dalimova, G.N., Ya, N., Kul’chik & Abduazimoz, K.A. 1978.
A study of the structure of kenaf lignins by alkaline nitrobenzene
oxidation. Chemistry of Natural Compounds 14(5): 551-554.
Gierlinger, N.,
Keplinger, T. & Harrington, M. 2012. Imaging of plant cell
walls by confocal Raman microscopy. Nature Protocols 7(9):
1694-1708.
Jaafar, S.N.S.,
Haimer, E., Liebner, F., Bohmdorfer, S., Potthast, A. & Rosenau,
T. 2011. Empty palm fruit bunches-a Co2- based biorefinery concept.
Journal of Biobased Materials and Bioenergy 5: 1-9.
Jimenez, L., Serrano,
L., Rodriguez, A. & Sanchez, R. 2009. Soda-anthraquinone pulping
of palm oil empty fruit bunches and beating of the resulting pulp.
Bioresource Technology 100: 1262-1267.
Li, X., Tabil,
L.G. & Panigrahi, S. 2007. Chemical treatments of natural
fiber for use in natural fiber-reinforced composites: A review.
J. Polym. Environ. 15: 25-33.
Lu, F., Karlen,
S.D., Regner, M., Kim, H., Ralph, S.A., Sun, R., Kuroda, K., Augustin,
M.A., Mawson, M., Sabarez, H., Singh, T., Jimenez-Monteon, G.,
Zakaria, S., Hill, S., Harris, P.J., Boerjan, W., Wilkerson, C.G.,
Mansfield, S.D. & Ralph, J. 2015. Naturally P-hydroxybenzoylated
lignins in palms. Bioenerg. Res. 8: 934.
Luo, J., Genco,
J., Cole, B. & Fort, R. 2011. Lignin recovered from the near-neutral
hemicellulose extraction process as a precursor for carbon fiber.
BioResource 6(4): 4566-4593.
Mohamad Ibrahim,
M.N., Zakaria, N., Sipaut, C.S., Sulaiman, O. & Hashim, R.
2011. Chemical and thermal properties of lignin from oil palm
biomass as a subtitute for phenol in a phenol formaldehyde resin
production. Carbohydrate Polymer 86: 112-119.
Mohamad Ibrahim,
M.N., Md Ghani, A. & Nen, N. 2007. Formulation of lignin phenol
formaldehyde resins as a wood adhesive. The Malaysian Journal
of Analytical Sciences 11(1): 213-218.
Mossello, A.A.,
Harun, J., Shamsi, S.R.F., Resalati, H., Md Tahir, P., Ibrahim,
R. & Mohmamed, A.Z. 2010. A review of literatures related
of using kenaf for pulp production (beating, fractionation, and
recycled fiber). Modern Applied Science 4(9): 131-138.
Nishimura, N.,
Izumi, A. & Kuroda, K. 2002. Structural characterization of
kenaf lignin: Differences among kenaf varieties. Industrial
Crops and Products 15: 115-122.
Park, Y., Doherty,
W.O.S. & Halley, P.J. 2008. Developing lignin-based resin
coatings and composites. Industrial Crops and Products 27:
163-167.
Roder, T. &
Sixta, H. 2004. Confocal Raman spectroscopy-applications on wood
samples. Lenzinger Berichte 83: 13-16.
Seca, A.M.L., Cavaleiro,
J.a.S., Domingues, F.M.J., Silverstre, A.J.D., Evtuguin, D. &
Neto, C.P. 1998. Structural characterization of the bark and core
lignins from kenaf (Hibiscus cannabinus) J. Agric. Food
Chem. 46: 3100-3108.
Sevastyanova, O.,
Qin, W. & Kadla, J.F. 2010. Effect of nanofillers as reinforcement
agents for lignin composite fibers. Journal of Applied Polymer
Science 117: 2877-2881.
Sumathi, G.A.,
Chai, S.P. & Mohamed, A.R. 2008. Utilization of oil palm as
a source of renewable energy in Malaysia. Renewable and Sustainable
Energy Reviews 12: 2404-2421.
Sun, R., Tomkinson,
J. & Jones, G.L. 2000. Fractional characterization of Ash-Aq
lignin by successive extraction wih organic solvents from oil
palm EFB fibre. Polymer Degradation and Stability 68: 11-119.
Yan, T., Xu, Y.
& Yu, C. 2009. The isolation and characterization of lignin
of kenaf fiber. Journal of Applied Polymer Science 114:
1896-1901.
*Corresponding author; email: szakaria@ukm.edu.my