Sains Malaysiana 45(11)(2016):
1707–1714
Bulk CO2/CH4 Separation
for Offshore Operating Conditions using Membrane Process
(Pemisahan Pukal CO2/CH4 untuk Keadaan Operasi Luar Pesisir menggunakan
Proses Membran)
NORWAHYU JUSOH,
KOK
KEONG
LAU*,
YIN
FONG
YEONG
& AZMI M. SHARIFF
Chemical Engineering
Department, Universiti Teknologi PETRONAS,
32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
Received: 6 April
2015/Accepted: 30 March 2016
ABSTRACT
The increasing demands of natural
gas pushes energy industries to explore the reservoirs contain
high CO2 concentration
and impurities including heavy hydrocarbons. High efficiency of
using membrane technology in CO2-natural gas separation
has extended its potential application to offshore environment.
Due to the limited studies related with the separation of CO2 under
offshore conditions, the present work has investigated the separation
performance of a commercial membrane in removing bulk CO2 from
methane at elevated pressure condition. A wide range of offshore
operating conditions including, pressure from 10 to 50 bar, CO2 concentration
from 25 to 70% and temperature of 30oC, 40oC
and 50oC were studied. High relative CO2 permeance
and relative CO2/CH4 selectivity
were observed when the pressure and the CO2 concentration
increased. This work, therefore substantial is to bridge the gap
and facilitates the application of membrane technology for offshore
operating conditions.
Keywords: Bulk CO2;
membrane process; natural gas separation
ABSTRAK
Peningkatan permintaan terhadap
gas asli telah mendorong industri tenaga untuk meneroka takungan
yang mengandungi kepekatan CO2 dan
bendasing yang tinggi termasuk hidrokarbon berat. Kecekapan tinggi
dalam penggunaan teknologi membran dalam pemisahan CO2-gas
asli telah meningkatkan potensi aplikasi kepada persekitaran luar
pesisir. Disebabkan kajian yang berkaitan dengan pemisahan CO2 di
luar pesisir yang terhad, kajian terkini telah mengkaji prestasi
pemisahan membran komersial dalam mengeluarkan CO2 pukal
daripada metana pada keadaan tekanan yang tinggi. Pelbagai keadaan
operasi luar pesisir termasuk tekanan dari 10 kepada 50 bar, kepekatan
CO2 dari
25% ke 70% dan suhu 30°C, 40°C dan 50°C telah dikaji. Ketelapan
relatif CO2 dan
kepemilihan CO2/CH4 relatif
yang tinggi telah diperhatikan apabila tekanan dan kepekatan CO2 meningkat.
Oleh itu, penyelidikan ini penting untuk merapatkan jurang dan
memudahkan penggunaan teknologi membran bagi keadaan operasi luar
pesisir.
Kata kunci: CO2 pukal; pemisahan gas asli; proses membrane
REFERENCES
Ahmad,
A.L. & Lau, K.K. 2007. Modeling, simulation, and experimental
validation for aqueous solutions flowing in nanofiltration membrane
channel. Ind. Eng. Chem. Res. 46: 1316-1325.
Ahmad,
F., Lau, K.K., Shariff, A.M. & Murshid, G. 2012. Process simulation
and optimal design of membrane separation system for CO2
capture from natural gas. Comput. Chem. Eng. 36: 119-128.
Al-Juaied,
M. & Koros, W.J. 2006. Performance of natural gas membranes
in the presence of heavy hydrocarbons. J. Membrane Sci. 274:
227-243.
Ambrose,
D., Ewing, M.B. & McGlashan, M.L 2011. Critical constants
and second virial coefficient of gases. Kaye & Laby: Tables
of Physical & Chemical Constants. Chapter 3, Section 3.5.
Baker,
R.W. & Lokhandwala, K. 2008. Natural gas processing with membane:
Overview. Ind. Eng. Chem. Res. 4: 2109- 2021.
Baker,
R.W., Wijmans, J.G. & Kaschemekat, J.H. 1998. The design of
membrane vapor-gas separation systems. J. Membrane Sci. 151:
55-62.
Chen,
G.Q. 2012. Water vapor permeation through glassy polyimide membranes
and its impact upon carbon dioxide capture operations. PhD Thesis.
The University of Melbourne, Melbourne, Australia (Unpublished).
Costello,
L.M. & Koros, W.J. 1992. Temperature dependence of gas sorption
and transport properties in polymers: Measurement and application.
Ind. Eng. Chem. Res. 31: 2708-2714.
Dhingra,
S.S. 1997. Mixed gas transport study through polymeric membranes:
A novel technique. PhD Thesis. Virginia Polytechnic Institute
and State University, Blacksburg, Virginia (Unpublished).
Duda,
J.L., Hadj Romdhane, I. & Danner, R.P. 1994. Diffusion in
glassy polymers relaxation and antiplasticization. J. Non-
Cryst. Solids 172: 715-720.
Chatterjee, G., Houde, A.A. & Stern, S.A. 1997. Poly(ether urethane)
and poly(ether urethane urea) membranes with high H2S/CH4
selectivity. J. Membrane Sci. 135: 99-106.
Geankoplis, C.J. 2003. Transport Processes and Separation
Process Principles: Includes Unit Operations. 4th ed. New
Jersey: Prentice Hall.
Hanif, A., Suhartanto,
T. & Green, M.L.H. 2002. Possible utilisation of CO2
on Natuna’s gas field using dry reforming of methane to syngas
(CO & H2). SPE Asia Pacific Oil and Gas Conference
and Exhibition. Melbourne, Australia.
Hasan, R., Scholes,
C.A., Stevens, G.W. & Kentish, S.E. 2009. Effect of hydrocarbons
on the separation of carbon dioxide from methane through a polyimide
gas separation membrane. Ind. Eng. Chem. Res. 48: 5415-5419.
Hillock, A.M.W.,
Miller, S.J. & Koros, W.J. 2008. Crosslinked mixed matrix
membranes for the purification of natural gas: Effects of sieve
surface modification. J. Membrane Sci. 314: 193-199.
Husain, S. &
Koros, W.J. 2007. Mixed matrix hollow fiber membranes made with
modified HSSZ-13 zeolite in polyetherimide polymer matrix for
gas separation. J. Membrane Sci. 288: 195-207.
Khan, A.L., Li,
X. & Vankelecom, I.F.J. 2011. Mixed-gas CO2/CH4
and CO2/N2 separation with sulfonated PEEK
membranes. J. Membrane Sci. 372: 87-96.
Khulbe, K.C., Matsuura,
T., Lamarche, G. & Kim, H.J. 1997. The morphology characterisation
and performance of dense PPO membranes for gas separation. J.
Membrane Sci. 135: 211-223.
Koros, W.J., Chern,
R.T., Stannett, V. & Hopfenberg, H.B. 1981. A model for permeation
of mixed gases and vapors in glassy polymers. J. Polym. Sci.
Polym. Phys. 19: 1513-1530.
Lee, A.L., Feldkirchner,
H.L., Stern, S.A., Houde, A.Y., Gomez, J.P. & Meyer, H.S.
1994. Field tests of membrane modules for the separation of carbon
dioxide from low quality natural gas. Gas Sep. Purif. 9:
35-43.
Lee, J.S., Madden,
W. & Koros, W.J. 2010. Antiplasticization and plasticization
of Matrimid® asymmetric hollow fiber membranes - Part A. Experimental.
J. Membrane Sci. 350: 232-241.
Liu, L. 2008. Gas
separation by poly(ether block amide) membranes. PhD Thesis. University
of Waterloo, Ontario, Canada. (Unpublised).
Liu, Y., Chung,
T.S., Wang, R., Li, D.F. & Chng, M.L. 2003. Chemical cross-linking
modification of polyimide/poly(ether sulfone) dual-layer hollow-fiber
membranes for gas separation. Ind. Eng. Chem. Res. 42:
1190-1195.
Madden, W.C. 2005.
The performance of hollow fiber gas separation membranes in the
presence of an aggressive feed stream. PhD Thesis. Georgia Institute
of Technology Atlanta, Georgia (Unpublised).
Maeda, Y. &
Paul, D.R. 1987. Effect of antiplasticization on gas sorption
and transport. III. Free volume interpretation. J. Polym. Sci.
Polym. Phys. 25: 1005-1016.
Mohammadi, T.,
Moghadam, M.T., Saeidi, M. & Mahdyarfar, M. 2008. Acid gas
permeation behavior through poly(ester urethane urea) membrane.
Ind. Eng. Chem. Res. 47: 7361- 7367.
Mohammad Hosein,
S., Amin, G. & Mohammad, Mehdi, M.R. 2009. Optimization of
membrane based CO2 removal from natural gas using simple
models considering both pressure and temperature effect. International
Journal of Greenhouse Gas Control 3: 3-10.
O’Brien, K.C.,
Koros, W.J. & Barbari, T.A. 1986. A new technique for the
measurement of multicomponent gas transport through polymeric
films. J. Membrane Sci. 29: 229-238.
Schell, W.J. &
Houston, C.D. 1983. Membrane gas separations for chemical process
and energy application. In Indusrial Gas Separation, Vol. 223,
edited by Whyte, Jr. T.E., Yon, C.M. & Wagener, E.H. New York:
American Chemical Society. pp. 125-143.
Simons, K. 2010.
Membrane technologies for CO2 Capture. PhD Thesis.
University of Twente, Netherlands (Unpublished).
Tin, P.S. 2005.
Membrane materials and fabrications for gas separation. PhD Thesis.
National University of Singapore. Singapore (Unpublished).
Vaughan, G.L. &
Carrington, C.G. 1998. Psychometric properties of a moist carbon
dioxide atmosphere. Int. J. Food Prop. 1: 77-87.
Weiss, R.F. 1974.
Carbon dioxide in water and seawater: the solubility of a non-ideal
gas. Mar. Chem. 2: 203-215.
Wessling, M., Schoeman,
S., Boomgaard, T. & Smolders, C.A. 1991. Plasticization of
gas separation membranes. Gas Sep. Purif. 5: 222-228.
Wiryotmojo, A.S.,
Mukhtar, H. & Man, Z. 2009. Development of polysulfone carbon
molecular sieves mixed matrix membranes for CO2 removal
from natural gas. International Conference on Chemical, Biological
and Environmental Engineering, Singapore.
Wu, F., Li, L.,
Xu, Z., Tan, S. & Zhang, Z. 2006. Transport study of pure
and mixed gases through PDMS membrane. Chem. Eng. J. 117:
51-59.
Yoshimune, M. &
Haraya, K. 2013. CO2/CH4 mixed gas separation
using carbon hollow fiber membranes. Energy Procedia 37:
1109-1116.
Zhai, S., Foster,
J., Ward, S. & Harrison, M. 2012. Process for Gas Sweetening.
U.S Patent 8298505 B2.
*Corresponding author; email: laukokkeong@utp.edu.my