Sains Malaysiana 45(11)(2016): 1715–1721

 

Preparation and Characterization of Dual Layer Thin Layer Lanthanum Strontium Cobalt Ferrite /Alumina Hollow Fiber Membrane using Dip-coating and Brush-coating Techniques

(Penyediaan dan Pencirian Lapisan Dual Lapisan Nipis Lantanum Strontium Ferit Kobalt/ Membran Gentian Alumina Berongga menggunakan Teknik Penyalutan Celup dan Penyalutan Berus)

 

NORFAZLIANA ABDULLAH, MUKHLIS A RAHMAN*, MOHD HAFIZ DZARFAN OTHMAN, A. F. ISMAIL & JUHANA JAAFAR

 

Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim, Malaysia

 

Received: 6 July 2015/Accepted: 4 April 2016

 

ABSTRACT

This paper reports the preparation of the dual layer ceramic hollow fiber membrane that made of alumina and a mixed ion electron conducting (MIEC) material for simultaneous reaction and separation applications. Alumina hollow fiber membrane was prepared using the phase inversion process followed by a sintering technique at elevated temperature. The alumina hollow fiber membrane was used as membrane support onto which a thin and dense layer of lanthanum strontium cobalt ferrite (LSCF) was deposited. The main objective of this study was to investigate the LSCF coating formulations used in the deposition of LSCF layer onto alumina substrate membrane. The sintering temperature of thin LSCF layer was varied to investigate gas-tightness properties of LSCF membrane. A series of characterizations were conducted for both the support and the LSCF membrane. The result showed that the thin layer membranes with thicknesses ranging from 3 to 20 μm were successfully deposited on the surface of alumina hollow fiber support. The sintering process improved the gas-tightness properties but the sintering temperature above 1150oC caused defects on the surface of LSCF membrane.

 

Keywords: Asymmetric alumina hollow fiber; dip coating; lanthanum strontium cobalt ferrite; mixed ion electron conducting; phase inversion based spinning

 

ABSTRAK

Kertas ini melaporkan penyediaan membran dwi lapisan seramik gentian berongga yang diperbuat daripada alumina dan bahan elektron ion campur berjalan (MIEC) untuk aplikasi tindak balas dan perpisahan serentak. Membran alumina gentian berongga telah disediakan dengan menggunakan proses fasa balikan diikuti oleh teknik pensinteran pada suhu tinggi. Membran alumina gentian berongga digunakan sebagai membran sokongan dengan lapisan lantanum strontium kobalt ferit (LSCF) yang nipis dan padat akan dimendapkan di atasnya. Objektif utama penyelidikan ini adalah untuk mengkaji formula salutan LSCF yang digunakan dalam pemendapan lapisan LSCF ke atas membran alumina sokongan. Suhu pensinteran untuk lapisan nipis LSCF telah diubah untuk mengkaji sifat kedap gas LSCF membran. Terdapat beberapa siri pencirian telah dijalankan untuk kedua-dua membran sokongan dan membran LSCF. Hasil kajian menunjukkan lapisan nipis membran dengan ketebalan antara 3 hingga 20 μm boleh dimendapkan di atas permukaan alumina sokongan gentian berongga. Proses pensinteran meningkatkan sifat kedap gas tetapi peningkatan suhu melebihi 1150°C menyebabkan kerosakan pada permukaan membran LSCF.

 

Kata kunci: Alumina tidak simetri gentian berongga; fasa songsang berasaskan pemintalan; kobalt ferit lantanum strontium; pengaliran elektron campuran ion; penyalutan celup

REFERENCES

Büchler, O., Serra, J.M., Meulenberg, W.A., Sebold, D. & Buchkremer, H.P. 2007. Preparation and properties of thin La1−xSrxCo1−yFeyO3−δ perovskitic membranes supported on tailored ceramic substrates. Solid State Ionics 178: 91-99.

Droushiotis, N., Doraswami, U., Ivey, D., Othman, M.H.D., Li, K. & Kelsall, G. 2010. Fabrication by co-extrusion and electrochemical characterization of micro-tubular hollow fibre solid oxide fuel cells. Electrochemistry Communications 12(6): 792-795.

Gerdes, K. & Luss, D. 2006. Oxygen transport model for layered MIEC composite membranes. Solid State Ionics 177(33-34): 2931-2938.

Kingsbury, B.F.K. & Li, K. 2009. A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science 328(1-2): 134-140.

Li, K. 2007. Ceramic Membranes for Separation and Reactions. New York: John Wiley & Sons, Ltd.

Li, T., Wu, Z. & Li, K. 2014. Single-step fabrication and characterisations of triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells (SOFCs). Journal of Membrane Science 449: 1-8.

Othman, M.H.D., Wu, Z., Droushiotis, N., Doraswami, U., Kelsall, G. & Li, K. 2010. Single-step fabrication and characterisations of electrolyte/anode dual-layer hollow fibres for micro-tubular solid oxide fuel cells. Journal of Membrane Science 351(1-2): 196-204.

Paiman, S.H., Rahman, M.A., Othman, M.H.D., Ismail, A.F., Jaafar, J. & Aziz, A.A. 2015. Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion/sintering technique. Ceramics International 41(10 Part A): 12543-12553.

Rahman, M.A., Ghazali, M.A., Aziz, W.M.S.W.A., Othman, M.H.D., Jaafar, J. & Ismail, A.F. 2015. Preparation of titanium dioxide hollow fiber membrane using phase inversion and sintering technique for gas separation and water purification. Sains Malaysiana 44(8): 1195-1201.

Rahman, M.A., García-García, F.R., & Li, K. 2012a. Development of a catalytic hollow fibre membrane microreactor as a microreformer unit for automotive application. Journal of Membrane Science 390-391: 68-75.

Rahman, H.A., Muuchtar, A., Haron, S., Muhamad, N. & Abdullah, H. 2012b. Effect of processing parameters and additives on electrophoretic. Sains Malaysiana 41(2): 237- 244.

Riess, I. 2003. Mixed ionic–electronic conductors-material properties and applications. Solid State Ionics 157(1-4): 1-17.

Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y.S. & Diniz Da Costa, J.C. 2008. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science 320(1-2): 13-41.

Tan, X., Shi, L., Hao, G., Meng, B. & Liu, S. 2012. La0.7Sr0.3FeO3−α perovskite hollow fibre membranes for oxygen permeation and methane conversion. Separation and Purification Technology 96: 89-97.

Tan, X., Wang, Z. & Li, K. 2010. Effect of sintering on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite hollow fiber membranes. Industry & Engineering Chemistry Reseacrh 49: 2895-2901.

Tan, X., Pang, Z. & Li, K. 2008. Oxygen production using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite hollow fibre membrane modules. Journal of Membrane Science 310(1- 2): 550-556.

Tan, X., Liu, Y. & Li, K. 2005. Preparation of LSCF ceramic hollow fiber membranes for oxygen production by a phase inversion/sintering technique. Industrial & Engineering Chemistry Research 44(1): 61-66.

Wang, B., Zydorczak, B., Wu, Z.T. & Li, K. 2009. Stabilities of La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen separation membranes-Effects of kinetic demixing/decomposition and impurity segregation. Journal of Membrane Science 344(1-2): 101-106.

Wei, Y., Yang, W., Caro, J. & Wang, H. 2013. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chemical Engineering Journal 220: 185-203.

Wu, Z., Wang, B. & Li, K. 2011. Functional LSM-ScSZ/ NiO-ScSZ dual-layer hollow fibres for partial oxidation of methane. International Journal of Hydrogen Energy 36(9): 5334-5341.

Wu, Z., Wang, B. & Li, K. 2010. A novel dual-layer ceramic hollow fibre membrane reactor for methane conversion. Journal of Membrane Science 352(1-2): 63-70.

Zeng, P., Ran, R., Chen, Z., Gu, H., Shao, Z., Diniz Da Costa, J.C. & Liu, S. 2007. Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen selective membranes. Journal of Membrane Science 302(1-2): 171- 179.

 

 

*Corresponding author; email: r-mukhlis@utm.my

 

 

 

 

previous