Sains Malaysiana 45(11)(2016):
1715–1721
Preparation and Characterization of Dual
Layer Thin Layer Lanthanum Strontium Cobalt Ferrite /Alumina Hollow
Fiber Membrane using Dip-coating and Brush-coating Techniques
(Penyediaan dan Pencirian Lapisan Dual
Lapisan Nipis Lantanum Strontium Ferit Kobalt/ Membran Gentian
Alumina Berongga menggunakan Teknik Penyalutan Celup dan Penyalutan
Berus)
NORFAZLIANA ABDULLAH,
MUKHLIS
A
RAHMAN*, MOHD HAFIZ
DZARFAN
OTHMAN,
A.
F.
ISMAIL
& JUHANA JAAFAR
Advanced Membrane Technology Research
Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering,
Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim,
Malaysia
Received: 6 July 2015/Accepted:
4 April 2016
ABSTRACT
This paper reports the preparation
of the dual layer ceramic hollow fiber membrane that made of alumina
and a mixed ion electron conducting (MIEC)
material for simultaneous reaction and separation applications.
Alumina hollow fiber membrane was prepared using the phase inversion
process followed by a sintering technique at elevated temperature.
The alumina hollow fiber membrane was used as membrane support
onto which a thin and dense layer of lanthanum strontium cobalt
ferrite (LSCF) was deposited. The main objective
of this study was to investigate the LSCF coating
formulations used in the deposition of LSCF layer onto alumina substrate
membrane. The sintering temperature of thin LSCF layer
was varied to investigate gas-tightness properties of LSCF membrane.
A series of characterizations were conducted for both the support
and the LSCF
membrane. The result showed that the thin layer
membranes with thicknesses ranging from 3 to 20 μm were successfully
deposited on the surface of alumina hollow fiber support. The
sintering process improved the gas-tightness properties but the
sintering temperature above 1150oC
caused defects on the surface of LSCF membrane.
Keywords: Asymmetric alumina
hollow fiber; dip coating; lanthanum strontium cobalt ferrite;
mixed ion electron conducting; phase inversion based spinning
ABSTRAK
Kertas ini melaporkan penyediaan
membran dwi lapisan seramik gentian berongga yang diperbuat daripada
alumina dan bahan elektron ion campur berjalan (MIEC)
untuk aplikasi tindak balas dan perpisahan serentak. Membran alumina
gentian berongga telah disediakan dengan menggunakan proses fasa
balikan diikuti oleh teknik pensinteran pada suhu tinggi. Membran
alumina gentian berongga digunakan sebagai membran sokongan dengan
lapisan lantanum strontium kobalt ferit (LSCF)
yang nipis dan padat akan dimendapkan di atasnya. Objektif utama
penyelidikan ini adalah untuk mengkaji formula salutan LSCF yang
digunakan dalam pemendapan lapisan LSCF ke atas membran alumina sokongan.
Suhu pensinteran untuk lapisan nipis LSCF telah
diubah untuk mengkaji sifat kedap gas LSCF membran. Terdapat beberapa
siri pencirian telah dijalankan untuk kedua-dua membran sokongan
dan membran LSCF.
Hasil kajian menunjukkan lapisan nipis membran dengan ketebalan
antara 3 hingga 20 μm boleh dimendapkan di atas permukaan
alumina sokongan gentian berongga. Proses pensinteran meningkatkan
sifat kedap gas tetapi peningkatan suhu melebihi 1150°C menyebabkan
kerosakan pada permukaan membran LSCF.
Kata kunci: Alumina tidak simetri gentian berongga; fasa songsang
berasaskan pemintalan; kobalt ferit lantanum strontium; pengaliran
elektron campuran ion; penyalutan celup
REFERENCES
Büchler,
O., Serra, J.M., Meulenberg, W.A., Sebold, D. & Buchkremer,
H.P. 2007. Preparation and properties of thin La1−xSrxCo1−yFeyO3−δ perovskitic
membranes supported on tailored ceramic substrates. Solid State
Ionics 178: 91-99.
Droushiotis,
N., Doraswami, U., Ivey, D., Othman, M.H.D., Li, K. & Kelsall,
G. 2010. Fabrication by co-extrusion and electrochemical characterization
of micro-tubular hollow fibre solid oxide fuel cells. Electrochemistry
Communications 12(6): 792-795.
Gerdes,
K. & Luss, D. 2006. Oxygen transport model for layered MIEC
composite membranes. Solid State Ionics 177(33-34): 2931-2938.
Kingsbury,
B.F.K. & Li, K. 2009. A morphological study of ceramic hollow
fibre membranes. Journal of Membrane Science 328(1-2):
134-140.
Li,
K. 2007. Ceramic Membranes for Separation and Reactions. New
York: John Wiley & Sons, Ltd.
Li,
T., Wu, Z. & Li, K. 2014. Single-step fabrication and characterisations
of triple-layer ceramic hollow fibres for micro-tubular solid
oxide fuel cells (SOFCs). Journal of Membrane Science 449:
1-8.
Othman,
M.H.D., Wu, Z., Droushiotis, N., Doraswami, U., Kelsall, G. &
Li, K. 2010. Single-step fabrication and characterisations of
electrolyte/anode dual-layer hollow fibres for micro-tubular solid
oxide fuel cells. Journal of Membrane Science 351(1-2):
196-204.
Paiman, S.H., Rahman,
M.A., Othman, M.H.D., Ismail, A.F., Jaafar, J. & Aziz, A.A.
2015. Morphological study of yttria-stabilized zirconia hollow
fibre membrane prepared using phase inversion/sintering technique.
Ceramics International 41(10 Part A): 12543-12553.
Rahman, M.A., Ghazali, M.A., Aziz,
W.M.S.W.A., Othman, M.H.D., Jaafar, J. & Ismail, A.F. 2015.
Preparation of titanium dioxide hollow fiber membrane using phase
inversion and sintering technique for gas separation and water
purification. Sains Malaysiana 44(8): 1195-1201.
Rahman, M.A., García-García, F.R.,
& Li, K. 2012a. Development of a catalytic hollow fibre membrane
microreactor as a microreformer unit for automotive application.
Journal of Membrane Science 390-391: 68-75.
Rahman, H.A., Muuchtar, A., Haron,
S., Muhamad, N. & Abdullah, H. 2012b. Effect of processing
parameters and additives on electrophoretic. Sains Malaysiana
41(2): 237- 244.
Riess, I. 2003. Mixed ionic–electronic
conductors-material properties and applications. Solid State
Ionics 157(1-4): 1-17.
Sunarso, J., Baumann, S., Serra,
J.M., Meulenberg, W.A., Liu, S., Lin, Y.S. & Diniz Da Costa,
J.C. 2008. Mixed ionic-electronic conducting (MIEC) ceramic-based
membranes for oxygen separation. Journal of Membrane Science
320(1-2): 13-41.
Tan, X., Shi, L., Hao, G., Meng,
B. & Liu, S. 2012. La0.7Sr0.3FeO3−α
perovskite hollow fibre membranes for oxygen permeation and methane
conversion. Separation and Purification Technology 96:
89-97.
Tan, X., Wang, Z. & Li, K. 2010.
Effect of sintering on the properties of La0.6Sr0.4Co0.2Fe0.8O3-δ
perovskite hollow fiber membranes. Industry & Engineering
Chemistry Reseacrh 49: 2895-2901.
Tan, X., Pang, Z. & Li, K. 2008.
Oxygen production using La0.6Sr0.4Co0.2Fe0.8O3-δ
(LSCF) perovskite hollow fibre membrane modules. Journal of
Membrane Science 310(1- 2): 550-556.
Tan, X., Liu, Y. & Li, K. 2005.
Preparation of LSCF ceramic hollow fiber membranes for oxygen
production by a phase inversion/sintering technique. Industrial
& Engineering Chemistry Research 44(1): 61-66.
Wang, B., Zydorczak, B., Wu, Z.T.
& Li, K. 2009. Stabilities of La0.6Sr0.4Co0.2Fe0.8O3−δ
oxygen separation membranes-Effects of kinetic demixing/decomposition
and impurity segregation. Journal of Membrane Science 344(1-2):
101-106.
Wei, Y., Yang, W., Caro, J. &
Wang, H. 2013. Dense ceramic oxygen permeable membranes and catalytic
membrane reactors. Chemical Engineering Journal 220: 185-203.
Wu, Z., Wang, B. & Li, K. 2011.
Functional LSM-ScSZ/ NiO-ScSZ dual-layer hollow fibres for partial
oxidation of methane. International Journal of Hydrogen Energy
36(9): 5334-5341.
Wu, Z., Wang, B. & Li, K. 2010.
A novel dual-layer ceramic hollow fibre membrane reactor for methane
conversion. Journal of Membrane Science 352(1-2): 63-70.
Zeng, P., Ran, R., Chen, Z., Gu,
H., Shao, Z., Diniz Da Costa, J.C. & Liu, S. 2007. Significant
effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3-δ
oxygen selective membranes. Journal of Membrane Science 302(1-2):
171- 179.
*Corresponding author;
email: r-mukhlis@utm.my