Sains Malaysiana 45(11)(2016):
1741–1745
New Approach to
Calculate the Denominator for the Relative Risk Equation
(Pendekatan Baharu untuk
Menghitung Pembawah bagi Persamaan Risiko Relatif)
NOR AZAH
SAMAT*
& SYAFIQAH HUSNA MOHD
IMAM
MA’AROF
Department of Mathematics,
Faculty of Science and Mathematics, Universiti Pendidikan Sultan
Idris, 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia
Received: 21 May
2015/Accepted: 24 March 2016
ABSTRACT
Disease frequency is used to
measure the situation of the disease with reference to the population
size and time period which is in a fractional form. The lower
part of the fraction, known as denominator is the important part
as it was used to calculate a rate or ratio. Since the disease
frequency is based on a ratio estimator, the results are highly
dependent upon the value of denominator. Therefore, the main aim
of this paper was to propose a new method in calculating the denominator
for the relative risk equation with the application to chikungunya
disease data from Malaysia. The new method of calculating the
denominator of the relative risk equation includes the use of
discrete time-space stochastic SIR-SI
(susceptible-infective-recovered for human population
and susceptible-infective for vector population) disease transmission
model instead of the total disease counts. The results of the
analysis showed that the estimation of expected disease counts
based on total posterior means can overcome the problem of expected
counts estimation based on the total number of disease especially
when there is no observed disease count in certain regions. The
proposed new approach to calculate the denominator for the relative
risk equation is suitable for the case of rare disease in which
it offers a better method of expected disease counts estimation.
Keywords: Chikungunya disease;
disease mapping; relative risk estimation; SIR-SI disease
transmission model
ABSTRAK
Frekuensi penyakit digunakan
untuk mengukur situasi sesuatu penyakit dengan merujuk kepada
saiz populasi dan tempoh masa yang berbentuk pecahan. Bahagian
bawah pecahan, yang dikenali sebagai pembawah ialah bahagian yang
penting kerana ia digunakan untuk menghitung suatu kadar atau
nisbah. Memandangkan frekuensi penyakit adalah berasaskan suatu
anggaran nisbah, keputusan anggaran sangat bergantung kepada nilai
pembawah tersebut. Oleh itu, matlamat utama kajian ini ialah untuk
mencadangkan suatu kaedah baharu dalam mengira pembawah bagi persamaan
risiko relatif dengan aplikasi kepada data penyakit chikungunya
dari Malaysia. Kaedah baru pengiraan pembawah bagi persamaan risiko
relatif mengambil kira penggunaan model jangkitan penyakit stokastik
diskrit masa-ruang SIR-SI (rentan-jangkitan-pulih
bagi populasi manusia, rentan-jangkitan bagi populasi vektor)
dan bukan jumlah bilangan penyakit. Hasil analisis menunjukkan
bahawa penganggaran bilangan jangkaan penyakit berdasarkan jumlah
posterior min dapat mengatasi masalah penganggaran jumlah jangkaan
berdasarkan jumlah bilangan penyakit khususnya apabila tiada penyakit
yang diperhatikan dalam sesuatu kawasan. Kaedah baru yang dicadangkan
untuk mengira pembawah bagi persamaan risiko relatif adalah sesuai
bagi kes penyakit yang jarang berlaku kerana ia menawarkan kaedah
yang lebih baik bagi penganggaran bilangan jangkaan penyakit.
Kata kunci: Model jangkitan penyakit SIR-SI;
pemetaan penyakit; penganggaran risiko relatif; penyakit chikungunya
REFERENCES
Bailey, L., Vardulaki,
K., Langham, J. & Chandramohan, D. 2005. Introduction to
Epidemiology. London: Open University Press.
Coutinho, L.M.S.,
Scazufca, M. & Menezes, P.R. 2008. Methods for estimating
prevalence ratios in cross-sectional studies. Revista de Saúde
Pública 42(6): 992-998.
de la Hunty, A.,
Gibson, S. & Ashwell, M. 2013. Does regular breakfast cereal
consumption help children and adolescents stay slimmer? A systematic
review and meta-analysis. Obes Facts 6(1): 70-85.
Lindenauer, P.K.,
Bernheim, S.M., Grady, J.N., Lin, Z., Wang, Y., Merrill, A.R.,
Han, L.F., Rapp, M.T., Drye, E.E., Normand, S.L. & Krumholz,
H.M. 2010. The performance of US hospitals as reflected in risk-standardized
30-day mortality and readmission rates for medicare beneficiaries
with pneumonia. Journal of Hospital Medicine 5(6): E12-18.
Mathenge, W., Bastawrous,
A., Peto, T., Leung, I., Foster, A. & Kuper, H. 2013. Prevalence
of age related macular degeneration in Nakuru, Kenya: A cross-sectional
population-based study. PLoS Medicine 10(2): e1001393.
McKone, E., Aimola
Davies, A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne,
T. & Platow, M.J. 2010. Asia has the global advantage: Race
and visual attention. Vision Research 50(16): 1540-1549.
Samat, N.A. &
Percy, D.F. 2012. Vector-borne infectious disease mapping with
stochastic difference equations: An analysis of dengue disease
in Malaysia. Journal of Applied Statistics 39(9): 2029-2046.
Stefan, M.S., Pekow,
P.S., Nsa, W., Priya, A., Miller, L.E., Bratzler, D.W., Rothberg,
M.B., Goldberg, R.J., Baus, K. & Lindenauer, P.K. 2013. Hospital
performance measures and 30-day readmission rates. Journal
of General Internal Medicine 28(3): 377-385.
Szumilas, M. 2010.
Explaining odds ratios. Journal of the Canadian Academy of
Child and Adolescent Psychiatry 19(3): 227-229.
*Corresponding author; email: norazah@fsmt.upsi.edu.my