Sains Malaysiana 45(11)(2016):
1747–1754
A Sixth-Order RKFD Method with Four-Stage for Directly Solving Special Fourth-Order
ODEs
(Kaedah RKFD Peringkat Keenam dengan Tahap Empat untuk
Menyelesaikan Secara Terus PPB Khas Peringkat
Keempat)
FUDZIAH ISMAIL1,2*,
KASIM
HUSSAIN3
& NORAZAK SENU1,2
1Department of Mathematics,
Faculty of Science, Universiti Putra Malaysia, 43400 Serdang,
Selangor Darul Ehsan, Malaysia
2Institute for Mathematical
Research, Universiti Putra Malaysia, 43400 Serdang, Selangor
Darul Ehsan, Malaysia
3Department of Mathematics,
College of Science, Al-Mustansiriyah University, Baghdad
Iraq
Received: 28 October
2015/Accepted: 23 March 2016
ABSTRACT
In this article, the general
form of Runge-Kutta method for directly solving a special fourth-
order ordinary differential equations denoted as RKFD method
is given. The order conditions up to order seven are derived,
based on the order conditions, we construct a new explicit four-stage
sixth-order RKFD
method denoted as RKFD6 method. Zero-stability of
the method is proven. Comparisons are made using the existing
Runge–Kutta methods after the problems are reduced to a system
of first order ordinary differential equations. Numerical results
are presented to illustrate the efficiency and competency of the
new method.
Keywords: Ordinary differential
equations; special fourth order; RKFD
method; Runge-Kutta method
ABSTRAK
Dalam kertas ini, bentuk umum
kaedah Runge-Kutta untuk menyelesaikan secara terus persamaan
pembezaan biasa khas peringkat keempat yang ditandakan sebagai
kaedah RKFD diberikan.
Syarat tertib hingga ke peringkat ketujuh diterbitkan, berasaskan
syarat ini, kami bina kaedah baharu RKFD tahap empat peringkat keenam yang
ditandakan sebagai RKFD6. Kestabilan sifar kaedah ini dibuktikan.
Perbandingan dijalankan menggunakan kaedah Runge-Kutta sedia ada
setelah masalah tersebut diturunkan kepada sistem persamaan pembezaan
peringkat pertama. Keputusan berangka dipersembahkan untuk menunjukkan
kecekapan dan kompetensi kaedah yang baharu tersebut.
Kata kunci: Kaedah RKFD; kaedah
Runge-Kutta; peringkat keempat khas; persamaan pembezaan biasa
REFERENCES
Awoyemi,
D.O. & Idowu, O.M. 2005. A class of hybrid collecations methods
for third-order ordinary differential equations. International
Journal of Computer Mathematics 82(10): 1287-1293.
Butcher,
J.C. 2008. Numerical Methods for Ordinary Differential Equations.
New York: John Wiley & Sons.
Butcher,
J.C. 1964. On Runge-Kutta processes of high order. Journal
of the Australian Mathematical Society 4(2): 179- 194.
Dahlquist,
G. 1978. On accuracy and unconditional stability of linear multistep
methods for second order differential equations. BIT Numerical
Mathematics 18(2): 133-136.
Dormand,
J.R. 1996. Numerical Methods for Differential Equations, A
Computational Approach. Florida: CRC Press.
Dormand,
J.R., El-Mikkawy, M.E.A. & Prince, P.J. 1987. Families of
Runge-Kutta-Nyström formulae. IMA Journal of Numerical Analysis
7(2): 235-250.
Hairer,
E., Nørsett, S.P. & Wanner, G. 2010. Solving Ordinary Differential
Equations I: Nonstiff Problems. Berlin: Springer- Verlag.
Henrici,
P. 1962. Discrete Variable Methods in Ordinary Differential
Equations. New York: John Wiley & Sons.
Hussain,
K., Ismail, F. & Senu, N. 2015. Runge-Kutta type methods for
directly solving special fourth-order ordinary differential equations.
Mathematical Problems in Engineering 2015: Article ID.
893763.
Jator,
S.N. 2011. Solving second order initial value problems by a hybrid
multistep method without predictors. Applied Mathematics and
Computation 217(8): 4036-4046.
Kayode, S.J. 2008. An order six zero-stable method for direct solution
of fourth-order ordinary differential equations. American Journal
of Applied Sciences 5(11): 1461-1466.
Lambert, J.D. 1991. Numerical Methods for Ordinary Differential
Systems, The Initial Value Problem. England: John Wiley &
Sons.
Majid, Z.A. &
Suleiman, M. 2006. Direct integration method implicit variable
steps method for solving higher order systems of ordinary differential
equations directly. Sains Malaysiana 35(2): 63-68.
Olabode, B.T. 2009.
A six-step scheme for the solution of fourth-order ordinary differential
equations. The Pacific Journal of Science and Technology 10(1):
143-148.
Onumanyi, P., Sirisena,
U.W. & Jator, S.N. 1999. Continuous finite difference approximations
for solving differential equations. International Journal of
Computer Mathematics 72(1): 15-27.
Waeleh, N., Majid,
Z.A. & Ismail, F. 2011. A new algorithm for solving higher
order IVPs of ODEs. Applied Mathematical Science 5(56):
2795-2805.
*Corresponding author; email: fudziah_i@yahoo.com.my