Sains Malaysiana 45(11)(2016):
1773–1777
On the Estimation of
Three Parameters Lognormal Distribution Based on Fuzzy Life Time
Data
(Anggaran Taburan Lognormal
Tiga Parameter Berdasarkan Data Masa Hayat yang Kabur)
MUHAMMAD SHAFIQ1*,
ALAMGIR2
& MUHAMMAD ATIF2
1Department
of Economics, Kohat University of Science and Technology, Kohat
2Department
of Statistics, University of Peshawar, Pakistan
Received:
10 June 2015/Accepted: 14 June 2016
ABSTRACT
Countless statistical tools
are available to extract information from data. Life time modeling
is considered as one of the most prominent fields of statistics,
which is evident from the developments made in this field in the
last few decades. Almost every statistic for life time analysis
is based on precise life time observations, however, life time is
not a precise measurement but more or less fuzzy. Therefore, in
addition to classical statistical tools, fuzzy number approaches
to describe life time data are more suitable. In order to incorporate
fuzziness of the observations, fuzzy estimators for the three parameter
lognormal distribution were suggested. The proposed estimators cover
stochastic variation as well as fuzziness of the observations.
Keywords: Characterizing function;
fuzzy number; life time; non-precise data
ABSTRAK
Terdapat banyak perkakasan
statistik tersedia untuk mengekstrak maklumat daripada data. Pemodelan
masa hayat dianggap sebagai salah satu bidang statistik yang paling
menonjol. Ini jelas daripada pembangunan bidang ini sejak beberapa
dekad yang lalu. Hampir setiap statistik untuk analisis masa hayat
adalah berasaskan pemerhatian masa hayat yang tepat, walau bagaimanapun,
masa hayat bukanlah suatu pengukuran yang tepat tetapi lebih atau
kurang kabur. Oleh itu, sebagai tambahan kepada perkakas statistik
klasik, pendekatan nombor kabur untuk menggambarkan data masa hayat
adalah lebih sesuai. Dalam usaha untuk menggabungkan kekaburan daripada
pemerhatian, penganggaran kabur untuk taburan tiga parameter lognormal
telah dicadangkan. Penganggaran yang dicadangkan meliputi kelainan
stokastik serta kekaburan daripada pemerhatian.
Kata kunci: Data tidak tepat; fungsi pencirian; masa hayat; nombor
kabur
REFERENCES
Barbato,
G., Germak, A., Genta, G. & Barbato, A. 2013. Measurements
for Decision Making. Measurements and Basic Statistics. Bologna:
Esculapio.
Cohen,
A.C. & Whitten, B.J. 1980. Estimation in the three-parameter
lognormal distribution. Journal of the American Statistical Association
75(370): 399-404.
Deshpande,
J.V. & Purohit, S.G. 2005. Life Time Data: Statistical Models
and Methods. Singapore: World Scientific Publishing.
Huang,
H.Z., Zuo, M.J. & Sun, Z.Q. 2006. Bayesian reliability analysis
for fuzzy lifetime data. Fuzzy Sets and Systems 157(12):
1674-1686.
Klir,
G.J. & Yuan, B. 1995. Fuzzy Sets and Fuzzy Logic: Theory
and Applications. New Jersey: Prentice-Hall.
Pak,
A., Parham, G. & Saraj, M. 2013. Reliability estimation in Rayleigh
distribution based on fuzzy lifetime data. International Journal
of System Assurance Engineering and Management 5(4): 487-494.
Szeliga,
E. 2004. Structural reliability - fuzzy sets theory approach. Journal
of Theoretical and Applied Mechanics 42(3): 651-666.
Viertl,
R. 2011. Statistical Methods for Fuzzy Data. Chichester:
Wiley.
Viertl,
R. 2009. On reliability estimation based on fuzzy lifetime data.
Journal of Statistical Planning & Inference 139(5): 1750-1755.
Viertl,
R. & Hareter, D. 2006. Beschreibung und Analyse unscharfer
Information: Statistische Methoden f¨ur unscharfe Daten. Wien:
Springer.
Wu,
H.C. 2004. Fuzzy Bayesian estimation on lifetime data. Computational
Statistics 19(4): 613-633.
Zadeh,
L. 1965. Fuzzy sets. Information and Control 8(3): 338-353.
*Corresponding author; email:
mshafiq_stat@yahoo.com
|