Sains Malaysiana 45(12)(2016): 1787–1794

http://dx.doi.org/10.17576/jsm-2016-4512-02

 

Pembentukan Cekung Berkualiti Tinggi Menggunakan Tempoh Penganodan yang Singkat bagi Penghasilan AAO

(Formation of High Quality Concave using Short Anodization Duration for Fabrication of AAO)

 

N.U. SAIDIN1,2, M.H.H. JUMALI2*, K.Y. KOK1 & I.K. NG1

 

1Agensi Nuklear Malaysia, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Recieved: 31 December 2015/Accepted: 25 March 2016

 

ABSTRAK

Kualiti membran AAO yang disediakan melalui teknik penganodan dua peringkat adalah sangat dipengaruhi oleh pra-pembentukan cekung yang dihasilkan semasa penganodan pertama. Kajian ini dijalankan untuk menentukan tempoh penganodan yang optimum bagi menghasilkan cekung yang berkualiti. Penganodan dilakukan menggunakan larutan 0.3 M H2C2O4 sebagai elektrolit dengan beza keupayaan dan suhu masing-masing ditetapkan pada 40 V dan 18°C. Proses penganodan dilakukan sehingga 6 jam. Perubahan nilai arus sepanjang tempoh penganodan direkodkan. Selepas penyingkiran lapisan oksida, kualiti cekung yang terbentuk dikaji menggunakan FESEM. Mikrograf FESEM mengesahkan pembentukan cekung berstruktur heksagon adalah seragam. Selain memperbaiki keseragaman, pertambahan tempoh penganodan telah membentuk cekung yang lebih jelas, tersusun serta kecacatan yang minimum. Keputusan kajian mendapati bahawa tempoh optimum bagi mendapatkan cekung yang seragam dan sempurna adalah antara 4 dan 6 jam. Ini kerana pertambahan tempoh penganodan seterusnya akan menyebabkan keruntuhan dinding cekung yang akhirnya menjadi punca kepada pembentukan liang yang bersentuhan antara satu sama lain. Selain itu, mekanisma penghasilan bentuk cekung turut dibincangkan.

 

Kata kunci: AAO; cekung; heksagon; pra-pembentukan; seragam

 

ABSTRACT

The quality of the AAO membrane prepared using two-step anodization technique is strongly influenced by the pre-textured concave indented during the first-step of anodization. This work was conducted to determine the optimum duration of anodization to produce a high quality of concaves. The anodization process was conducted using 0.3 M H2C2O4 solution as an electrolyte at 40 V and 18°C applied voltage and temperature, respectively. Anodizing process was performed up to 6 h. The changes of the current during anodization process was recorded. After removal of the resulting oxide layer, the concaves formed were studied using FESEM. FESEM micrograph confirmed the formation of a uniform hexagonal concaves. Beside improving the uniformity, the extension of anodizing duration formed a well-defined arrangement of concaves with minimum defects. This work found that the optimum period to obtain a uniform and perfect concaves is between 4 and 6 h. This is because the extension of anodizing period caused the wall to collapse and creating larger, irregular pores. In addition, the underlying mechanism for concave formation was described in detail.

 

Keywords: AAO; concave; hexagon; pre-textured; uniform

REFERENCES

Ahn, J.Y., Kim, J.H., Moon, K.J., Kim, J.H., Lee, C.S., Kim, M.Y., Kang, J.W. & Kim, S.H. 2013. Incorporation on multiwalled carbon nanotubes into TiO2 nanowires for enhancing photovoltaic performance of dye-sensitized solar cells via highly efficient electron transfer. Solar Energy 92: 41-46.

Alaa, M. A-E., Mebed, A.M., Gaber, A. & Abdel-Rahim, M.A. 2013. Effect of the anodization parameters on the volume expansion of anodized aluminum films. Int. J. Electrochem. Sci. (8): 10515-10525.

Balde, M., Vena, A. & Sorli, B. 2015. Fabrication of porous anodic aluminium oxide layers on paper for humidity sensors. Sensors and Actuators B 220: 829-839.

Choi, J., Nielsch, K., R., Reiche, M., Wehrspohn, R.B. & Gösele, U. 2003. Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. J. Vac. Sci. Technol. B 21(2): 763.

Choi, J., Schilling, J., Nielsch, K., Hillebrand, R., Reiche, M., Wehrspohn, R.B. & Gösele, U. 2002. Large-area porous alumina photonic crystals via imprint method. Mat. Res. Soc. Symp. Proc. 722: L5.2.1.

Chowdhury, P., Raghuvaran, K., Krishnan, M., Barshilia, H.C. & Rajam, K.S. 2011. Effect of process parameters on growth rate and diameter of nano-porous alumina templates. Bull. Mater. Sci. 34: 423-427.

Han, G., Lu, J. & Gao, Y. 2015. FeCo nanowires deposited in a magnetic field. Journal of Magnetism and Magnetic Materials 393: 199-203.

Hwang, I-S., Lee, E-B., Kim, S-J., Choi, J-K., Cha, J-H., Lee, H-J., Ju, B-K. & Lee, J-H. 2011. Gas sensing properties of SnO2 nanowires on micro-heater. Sensors and Actuators B 154: 295-300.

Jaafar, M., Navas, D., Hernández-Vélez, M., Baldonedo, J.L., Vázquez, M. & Asenjo, A. 2009. Surf. Sci. 603: 3155.

Kikuchi, T., Nishinaga, O., Natsui, S. & Suzuki, R.O. 2015. Fabrication of self-ordered porous alumina via etidronic acid anodizing and structural color generation from submicrometer-scale dimple array. Electrochimica Acta 156: 235-243.

Kok, K.Y., Ng, I.K., Choo, T.F., Saidin, N.B. & Abdullah, Y. 2016. Electrochemical synthesis and characterization of BiTe-based nanowire arrays as thermoelectric nanogenerators. Materials Science Forum 840: 271-275.

Lee, I., Jo, Y., Kim, Y-T., Tak, Y. & Choi, J. 2012. Electrochemical thinning for anodic aluminum oxide and anodic titanium oxide. Bull. Korean Chem. Soc. 33: 1465-1469.

Liu, C.Y., Datta, A. & Wang, Y.L. 2001. Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys. Lett. 78(1): 120.

Maleki, K., Sanjebi, S. & Alemipour, Z. 2015. DC electrodeposition of NiGa alloy nanowires in AAO template. Journal of Magnetism and Magnetic Materials 395: 289-293.

Masuda, H., Kanezawa, K. & Nishio, K. 2002. Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope. Chem. Lett. 31(12): 1218-1219.

Masuda, H., Yada, K. & Osaka, A. 1998. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Japanese Journal of Applied Physics 37: L1340-L1342.

Michalska-Domańska, M., Norek, M., Stępniowski, W.J. & Budner, B. 2013. Fabrication of high quality anodic aluminum oxide (AAO) on low purity-A comparative study with the AAO produced on high purity aluminum. Electrochimica Acta 105: 424-432.

O‘Sullivan, J.P. & Wood, G.C. 1970. Nucleation and growth of porous anodic films on aluminium. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 317(1531): 511-543.

Ortiz, G.F., Cabello, M., López, M.C., Tirado, J.L., McDonald, M.J. & Yang, Y. 2016. Exploring a Li-ion battery using surface modified titania nanotubes versus high voltage cathode nanowires. Journal of Power Sources 303: 194-202.

Palibdora, E., Farcas, T. & Lupsan, A. 1995. A new image of porous aluminium oxide. Materials Science and Engineering B 32: 1-5.

Poinern, G.E.J., Ali, N. & Fawcett, D. 2011. Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4: 487-526.

Politi, J., Rea, I., Dardano, P., Stefano, L.D. & Gioffrč, M. 2015. Versatile synthesis of ZnO nanowires for quantitative optical sensing of molecular biorecognition. Sensors and Actuators B 220: 705-711.

Schelhas, L.Y., Banholzer, M.J., Mirkin, C.A. & Tolbert, S.H. 2015. Magnetic confinement and coupling in narrow-diameter Au-Ni nanowires. Journal of Magnetism and Magnetic Materials 379: 239-243.

Spain, E., McCooey, A., Joyce, K., Keyes, T.E. & Forster, R.J. 2015. Gold nanowires and nanotubes for high sensitivity detection of pathhogen DNA. Sensors and Actuators B 215: 159-165.

Stȩpniowski, W.J., Nowak-Stȩpniowska, A., Presz, A., Czujko, T. & Varin, R.A. 2014a. The effect of time and temperature on the arrangement of anodic aluminum oxide nanopores. Materials Characterization 91: 1-9.

Stȩpniowski, W.J., Forbot, K., Norek, M., Michalska-Domańska, M. & Król, A. 2014b. The impact of viscocity of the electrolyte on the formation of nanoporous anodic aluminum oxide. Electrochimica Acta 133: 57-64.

Stȩpniowski, W.J., Norek, M., Michalska-Domańska, M. & Bojar, Z. 2013. Ultra-small nanoporous obtained by self-organized anodization of aluminum in oxalic acid at low voltage. Materials Letters 111: 20-23.

Stȩpniowski, W.J., Zasada, D. & Bojar, Z. 2011. First step of anodization influence the final nanopore arrangement in anodized alumina. Surface and Coatings Technology 206(6): 1416-1422.

Stȩpniowski, W.J. & Bojar, Z. 2011. Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions of the alumina structural features. Surface & Coatings Technology 206: 265-272.

Sulka, G.D., Brzózka, A., Zaraska, L. & Jaskula, M. 2010. Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays. Electrochemica Acta 55: 4368-4376.

Sulka, G.D. 2008. Highly ordered anodic porous alumina formation by self-organized anodizing. In Nanostructures Materials in Electrochemistry, edited by Eftekhari, A. Weinheim: Wiley-VCH. pp. 1-116.

Tan, S-S., Kee, Y-Y., Wong, H-Y. & Tou, T-Y. 2013. Pulsed laser deposition of ITO nanorods in argon and OLED applications. Surface & Coatings Technology 231: 98-101.

Tang, M., He, J., Zhou, J. & He, P. 2006. Pore-widening with the assistance of ultrasonic: A novel process for preparing porous anodic aluminum oxide membrane. Materials Letters 60: 2098-2100.

Wang, G., Ma, Z., Shao, G., Kong, L. & Gao, W. 2015. Synthesis of LiFePO4@carbon nanotube core-shell nanowires with a high-energy efficient method for superior lithium ion battery cathods. Journal of Power Sources 291: 209-214.

Zagorskiy, D.L., Korotkov, V.V., Frolov, K.V., Sulyanov, S.N., Kudryavtsev, V.N., Kruglikov, S.S. & Bedin, S.A. 2015. Track pore matrixes for the preparation of Co, Ni and Fe nanowires: Electrodeposition and their properties. Physics Procedia 80: 144-147.

Zaraska, L., Sulka, G.D. & Jaskula, M. 2010. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surface & Coatings Technology 205: 2432-2437.

Zhang, L. & Jiao, W. 2015. The effect of microstructure on the gas properties of NiFe2O4 sensors: nanotube and nanoparticle. Sensors and Actuators B 216: 293-297.

 

 

*Corresponding author; email: hafizhj@ukm.edu.my

 

 

 

 

previous