Sains Malaysiana 45(12)(2016):
1787–1794
http://dx.doi.org/10.17576/jsm-2016-4512-02
Pembentukan Cekung Berkualiti Tinggi
Menggunakan Tempoh Penganodan yang Singkat bagi Penghasilan AAO
(Formation of High Quality Concave using
Short Anodization Duration for Fabrication of AAO)
N.U. SAIDIN1,2,
M.H.H.
JUMALI2*,
K.Y.
KOK1
& I.K. NG1
1Agensi Nuklear
Malaysia, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
2Pusat Pengajian
Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Recieved: 31 December
2015/Accepted: 25 March 2016
ABSTRAK
Kualiti membran AAO
yang disediakan melalui teknik penganodan dua peringkat
adalah sangat dipengaruhi oleh pra-pembentukan cekung yang dihasilkan
semasa penganodan pertama. Kajian ini dijalankan untuk menentukan
tempoh penganodan yang optimum bagi menghasilkan cekung yang berkualiti.
Penganodan dilakukan menggunakan larutan 0.3 M H2C2O4 sebagai
elektrolit dengan beza keupayaan dan suhu masing-masing ditetapkan
pada 40 V dan 18°C. Proses penganodan dilakukan sehingga 6 jam.
Perubahan nilai arus sepanjang tempoh penganodan direkodkan. Selepas
penyingkiran lapisan oksida, kualiti cekung yang terbentuk dikaji
menggunakan FESEM.
Mikrograf FESEM mengesahkan pembentukan cekung berstruktur heksagon
adalah seragam. Selain memperbaiki keseragaman, pertambahan tempoh
penganodan telah membentuk cekung yang lebih jelas, tersusun serta
kecacatan yang minimum. Keputusan kajian mendapati bahawa tempoh
optimum bagi mendapatkan cekung yang seragam dan sempurna adalah
antara 4 dan 6 jam. Ini kerana pertambahan tempoh penganodan seterusnya
akan menyebabkan keruntuhan dinding cekung yang akhirnya menjadi
punca kepada pembentukan liang yang bersentuhan antara satu sama
lain. Selain itu, mekanisma penghasilan bentuk cekung turut dibincangkan.
Kata kunci: AAO;
cekung; heksagon; pra-pembentukan; seragam
ABSTRACT
The quality of the AAO
membrane prepared using two-step anodization technique
is strongly influenced by the pre-textured concave indented during
the first-step of anodization. This work was conducted to determine
the optimum duration of anodization to produce a high quality
of concaves. The anodization process was conducted using 0.3 M
H2C2O4 solution
as an electrolyte at 40 V and 18°C applied voltage and temperature,
respectively. Anodizing process was performed up to 6 h. The changes
of the current during anodization process was recorded. After
removal of the resulting oxide layer, the concaves formed were
studied using FESEM.
FESEM
micrograph confirmed the formation of a uniform
hexagonal concaves. Beside improving the uniformity, the extension
of anodizing duration formed a well-defined arrangement of concaves
with minimum defects. This work found that the optimum period
to obtain a uniform and perfect concaves is between 4 and 6 h.
This is because the extension of anodizing period caused the wall
to collapse and creating larger, irregular pores. In addition,
the underlying mechanism for concave formation was described in
detail.
Keywords: AAO; concave; hexagon;
pre-textured; uniform
REFERENCES
Ahn, J.Y., Kim, J.H.,
Moon, K.J., Kim, J.H., Lee, C.S., Kim, M.Y., Kang, J.W. &
Kim, S.H. 2013. Incorporation on multiwalled carbon nanotubes
into TiO2 nanowires for enhancing photovoltaic performance
of dye-sensitized solar cells via highly efficient electron transfer.
Solar Energy 92: 41-46.
Alaa, M. A-E., Mebed,
A.M., Gaber, A. & Abdel-Rahim, M.A. 2013. Effect of the anodization
parameters on the volume expansion of anodized aluminum films.
Int. J. Electrochem. Sci. (8): 10515-10525.
Balde, M., Vena, A.
& Sorli, B. 2015. Fabrication of porous anodic aluminium oxide
layers on paper for humidity sensors. Sensors and Actuators
B 220: 829-839.
Choi, J., Nielsch, K.,
R., Reiche, M., Wehrspohn, R.B. & Gösele, U. 2003. Fabrication
of monodomain alumina pore arrays with an interpore distance smaller
than the lattice constant of the imprint stamp. J. Vac. Sci.
Technol. B 21(2): 763.
Choi, J., Schilling,
J., Nielsch, K., Hillebrand, R., Reiche, M., Wehrspohn, R.B. &
Gösele, U. 2002. Large-area porous alumina photonic crystals via
imprint method. Mat. Res. Soc. Symp. Proc. 722: L5.2.1.
Chowdhury, P., Raghuvaran,
K., Krishnan, M., Barshilia, H.C. & Rajam, K.S. 2011. Effect
of process parameters on growth rate and diameter of nano-porous
alumina templates. Bull. Mater. Sci. 34: 423-427.
Han, G., Lu, J. &
Gao, Y. 2015. FeCo nanowires deposited in a magnetic field. Journal
of Magnetism and Magnetic Materials 393: 199-203.
Hwang, I-S., Lee, E-B.,
Kim, S-J., Choi, J-K., Cha, J-H., Lee, H-J., Ju, B-K. & Lee,
J-H. 2011. Gas sensing properties of SnO2 nanowires on micro-heater.
Sensors and Actuators B 154: 295-300.
Jaafar, M., Navas, D.,
Hernández-Vélez, M., Baldonedo, J.L., Vázquez, M. & Asenjo,
A. 2009. Surf. Sci. 603: 3155.
Kikuchi, T., Nishinaga,
O., Natsui, S. & Suzuki, R.O. 2015. Fabrication of self-ordered
porous alumina via etidronic acid anodizing and structural color
generation from submicrometer-scale dimple array. Electrochimica
Acta 156: 235-243.
Kok, K.Y., Ng, I.K., Choo, T.F., Saidin, N.B. & Abdullah, Y.
2016. Electrochemical synthesis and characterization of BiTe-based
nanowire arrays as thermoelectric nanogenerators. Materials
Science Forum 840: 271-275.
Lee, I., Jo, Y., Kim, Y-T., Tak, Y. & Choi, J. 2012. Electrochemical
thinning for anodic aluminum oxide and anodic titanium oxide.
Bull. Korean Chem. Soc. 33: 1465-1469.
Liu, C.Y., Datta,
A. & Wang, Y.L. 2001. Ordered anodic alumina nanochannels
on focused-ion-beam-prepatterned aluminum surfaces. Appl. Phys.
Lett. 78(1): 120.
Maleki, K., Sanjebi,
S. & Alemipour, Z. 2015. DC electrodeposition of NiGa alloy
nanowires in AAO template. Journal of Magnetism and Magnetic
Materials 395: 289-293.
Masuda, H., Kanezawa,
K. & Nishio, K. 2002. Fabrication of ideally ordered nanohole
arrays in anodic porous alumina based on nanoindentation using
scanning probe microscope. Chem. Lett. 31(12): 1218-1219.
Masuda, H., Yada,
K. & Osaka, A. 1998. Self-ordering of cell configuration of
anodic porous alumina with large-size pores in phosphoric acid
solution. Japanese Journal of Applied Physics 37: L1340-L1342.
Michalska-Domańska,
M., Norek, M., Stępniowski, W.J. & Budner, B. 2013. Fabrication
of high quality anodic aluminum oxide (AAO) on low purity-A comparative
study with the AAO produced on high purity aluminum. Electrochimica
Acta 105: 424-432.
O‘Sullivan, J.P.
& Wood, G.C. 1970. Nucleation and growth of porous anodic
films on aluminium. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences 317(1531): 511-543.
Ortiz, G.F., Cabello,
M., López, M.C., Tirado, J.L., McDonald, M.J. & Yang, Y. 2016.
Exploring a Li-ion battery using surface modified titania nanotubes
versus high voltage cathode nanowires. Journal of Power Sources
303: 194-202.
Palibdora, E.,
Farcas, T. & Lupsan, A. 1995. A new image of porous aluminium
oxide. Materials Science and Engineering B 32: 1-5.
Poinern, G.E.J.,
Ali, N. & Fawcett, D. 2011. Progress in nano-engineered anodic
aluminum oxide membrane development. Materials 4: 487-526.
Politi, J., Rea,
I., Dardano, P., Stefano, L.D. & Gioffrč, M. 2015. Versatile
synthesis of ZnO nanowires for quantitative optical sensing of
molecular biorecognition. Sensors and Actuators B 220:
705-711.
Schelhas, L.Y.,
Banholzer, M.J., Mirkin, C.A. & Tolbert, S.H. 2015. Magnetic
confinement and coupling in narrow-diameter Au-Ni nanowires. Journal
of Magnetism and Magnetic Materials 379: 239-243.
Spain, E., McCooey,
A., Joyce, K., Keyes, T.E. & Forster, R.J. 2015. Gold nanowires
and nanotubes for high sensitivity detection of pathhogen DNA.
Sensors and Actuators B 215: 159-165.
Stȩpniowski,
W.J., Nowak-Stȩpniowska, A., Presz, A., Czujko, T. &
Varin, R.A. 2014a. The effect of time and temperature on the arrangement
of anodic aluminum oxide nanopores. Materials Characterization
91: 1-9.
Stȩpniowski,
W.J., Forbot, K., Norek, M., Michalska-Domańska, M. &
Król, A. 2014b. The impact of viscocity of the electrolyte on
the formation of nanoporous anodic aluminum oxide. Electrochimica
Acta 133: 57-64.
Stȩpniowski,
W.J., Norek, M., Michalska-Domańska, M. & Bojar, Z. 2013.
Ultra-small nanoporous obtained by self-organized anodization
of aluminum in oxalic acid at low voltage. Materials Letters
111: 20-23.
Stȩpniowski,
W.J., Zasada, D. & Bojar, Z. 2011. First step of anodization
influence the final nanopore arrangement in anodized alumina.
Surface and Coatings Technology 206(6): 1416-1422.
Stȩpniowski,
W.J. & Bojar, Z. 2011. Synthesis of anodic aluminum oxide
(AAO) at relatively high temperatures. Study of the influence
of anodization conditions of the alumina structural features.
Surface & Coatings Technology 206: 265-272.
Sulka, G.D., Brzózka,
A., Zaraska, L. & Jaskula, M. 2010. Through-hole membranes
of nanoporous alumina formed by anodizing in oxalic acid and their
applications in fabrication of nanowire arrays. Electrochemica
Acta 55: 4368-4376.
Sulka, G.D. 2008.
Highly ordered anodic porous alumina formation by self-organized
anodizing. In Nanostructures Materials in Electrochemistry,
edited by Eftekhari, A. Weinheim: Wiley-VCH. pp. 1-116.
Tan, S-S., Kee,
Y-Y., Wong, H-Y. & Tou, T-Y. 2013. Pulsed laser deposition
of ITO nanorods in argon and OLED applications. Surface &
Coatings Technology 231: 98-101.
Tang, M., He, J.,
Zhou, J. & He, P. 2006. Pore-widening with the assistance
of ultrasonic: A novel process for preparing porous anodic aluminum
oxide membrane. Materials Letters 60: 2098-2100.
Wang, G., Ma, Z.,
Shao, G., Kong, L. & Gao, W. 2015. Synthesis of LiFePO4@carbon
nanotube core-shell nanowires with a high-energy efficient method
for superior lithium ion battery cathods. Journal of Power
Sources 291: 209-214.
Zagorskiy, D.L.,
Korotkov, V.V., Frolov, K.V., Sulyanov, S.N., Kudryavtsev, V.N.,
Kruglikov, S.S. & Bedin, S.A. 2015. Track pore matrixes for
the preparation of Co, Ni and Fe nanowires: Electrodeposition
and their properties. Physics Procedia 80: 144-147.
Zaraska, L., Sulka,
G.D. & Jaskula, M. 2010. Porous anodic alumina membranes formed
by anodization of AA1050 alloy as templates for fabrication of
metallic nanowire arrays. Surface & Coatings Technology
205: 2432-2437.
Zhang, L. &
Jiao, W. 2015. The effect of microstructure on the gas properties
of NiFe2O4 sensors: nanotube and nanoparticle.
Sensors and Actuators B 216: 293-297.
*Corresponding author; email: hafizhj@ukm.edu.my