Sains Malaysiana 45(12)(2016):
1835–1841
http://dx.doi.org/10.17576/jsm-2016-4512-07
Perlindungan Biokakisan Keluli Karbon
Akibat Bakteria Penurun Sulfat yang Dipencil daripada Minyak Mentah
Tropika
(Biocorrosion Protection of Carbon Steel
due to Isolated Sulfate-Reducing Bacteria from Tropical Crude
Oil)
MOHD NAZRI
IDRIS1,2*,
ABDUL
RAZAK
DAUD1,
NURAKMA
MAHAT1,
FATHUL
KARIM
SAHRANI3
& NORINSAN KAMIL OTHMAN1
1Pusat Pengajian
Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia
43600 Bangi, Selangor Darul Ehsan,
Malaysia
2Pusat Pengajian
Kejuruteraan Bahan dan Sumber Mineral, Universiti Sains Malaysia,
Kampus Kejuruteraan, 14300 Nibong
Tebal, Pulau Pinang, Malaysia
3Pusat Pengajian
Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan,
Malaysia
Received: 5 February 2016/Accepted:
26 May 2016
ABSTRAK
Ancaman biokakisan akibat aktiviti
bakteria penurun sulfat (SRB) pada saluran paip keluli
karbon dalam industri petroleum boleh menjejaskan kelancaran aliran
pengangkutan minyak mentah dan meningkatkan kos pengoperasian.
Usaha bagi melindungi keluli karbon serta pengawalan SRB masih
memerlukan kajian yang berterusan. Dalam kajian ini, keberkesanan
tetrametilamonium bromida (TMB), karboksimetil trimetilamonium (BTN)
dan benzalkonium klorida (BKC) bagi melindungi keluli karbon di
dalam persekitaran yang mengandungi SRB diuji melalui kaedah pengutuban
elektrokimia dinamik (PED) dan morfologi keluli karbon
dianalisis menggunakan mikroskop elektron imbasan. Analisis PED
mendapati penggunaan TMB, BTN dan BKC masing-masing
berupaya mengurangkan kadar kakisan sehingga 0.13, 0.56 dan 0.17
mm/thn berbanding 8.91 mm/thn pada larutan kawalan yang mengandungi
SRB.
Morfologi permukaan biofilem mengesahkan kadar pertumbuhan SRB serta
hasilan metabolisme bakteria ini turut mengalami penyusutan. Kajian
ini menunjukkan dua mekanisme kawalan kakisan didapati berlaku
iaitu mekanisme perencatan kakisan melalui penjerapan sebatian
amonium kuaterner pada permukaan keluli karbon serta berlakunya
proses tindak balas mitigasi sebatian ini dengan bakteria SRB. Kesimpulannya, TMB,
BTN
dan BKC
didapati berupaya melindungi keluli karbon daripada
mengalami kakisan akibat aktiviti SRB.
Kata kunci: Bakteria penurun
sulfat; biokakisan; keluli karbon
ABSTRACT
Biocorrosion menace of carbon
steel pipeline in petroleum industry attributed to sulfate-reducing
bacteria (SRB) activity is disrupting the crude oil transportation
process and increase the operational cost. Efforts for protecting
the carbon steel pipeline and controlling the SRB activities are continuously
being researched. In this work, the effectiveness of tetramethylammonium
bromide (TMB), carboxymethyl trimethylammonium (BTN)
and benzalkonium chloride (BKC) for protecting carbon steel in environment
containing SRB was studied by potential dynamic
polarization (PED) method and the morphology of carbon steel surface was
analyzed by scanning electron microscope. PED indicated
that TMB, BTN and BKC were
capable of reducing the corrosion rate to 0.13, 0.56 and 0.17
mm/yr, respectively, as compared with 8.91 mm/yr of control medium,
which contained SRB.
The morphology of surface biofilm proven that the rate of SRB growth
and their metabolism product has also been reduced. This study
suggested that there are two mechanisms of corrosion protection
i.e. the present quaternary ammonium compounds inhibited the corrosion
process on account of adsorption mechanism, meanwhile the mitigation
process of SRB and
their activities occurred due to interaction process between the
quaternary ammonium compounds and SRB itself. In conclusion, TMB,
BTN
and BKC are able to protect the carbon steel
from actively corroding due to SRB activities.
Keywords: Biocorrosion; carbon steel; sulfate-reducing bacteria
REFERENCES
Abdullah,
A., Yahaya, N., Md Noor, N. & Mohd Rasol, R. 2014. Microbial
corrosion of API 5L X-70 carbon steel by ATCC 7757 and consortium
of sulfate-reducing bacteria. Journal of Chemistry 2014(1):
1-7.
Ahmad, Z. 2006. Principles
of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann.
Al-Jaroudi, S.S., Ul-Hamid, A. & Al-Gahtani, M.M. 2011.
Failure of cruide oil pipeline due to microbiologically induced
corrosion. Corrosion Engineering, Science and Technology 46(4):
568-579.
Alabbas, F.M.,
Spear, J.R., Kakpovbia, A., Balhareth, N.M., Olson, D.L. &
Mishra, B. 2012. Bacterial attachment to metal substrate and its
effects on microbiologically-influenced corrosion in transporting
hydrocarbon pipeline. Journal of Pipeline Engineering 11(3):
63-72.
Badawi, A.M., Hegazy,
M.A., El-Sawy, A.A., Ahmed, H.M. & Kamel, W.M. 2010. Novel
quaternary ammonium hydroxide cationic surfactants as corrosion
inhibitors for carbon steel and as biocides for sulfate reducing
bacteria (SRB). Materials Chemistry and Physics 124(1):
458-465.
Boivin, J. 1995.
Oil industry biocides. Materials Performance 34(2): 65-68.
Davidova, I., Hicks,
M.S., Fedorak, P.M. & Suflita, J.M. 2001. The influence of
nitrate on microbial processes in oil industry production waters.
J. Ind. Microbiol. Biotechnol. 27(2): 80- 86.
Fathy, M., Badawi,
A., Mazrouaa, A.M., Mansour, N.A., Ghazy, E.A. & Elsabee,
M.Z. 2013. Styrene N-vinylpyrrolidone metal-nanocomposites as
antibacterial coatings against sulfate reducing bacteria. Materials
Science and Engineering: C 33(7): 4063-4070.
Fink, J.K. 2013.
Chapter 17 - Biocides. Dlm. Hydraulic Fracturing Chemicals
and Fluids Technology, Fink, J.K. (pnyt.), Gulf Professional
Publishing. hlm. 193-203.
Gardner, L.R. &
Stewart, P.S. 2002. Action of glutaraldehyde and nitrite against
sulfate-reducing bacterial biofilms. J. Ind. Microbiol. Biotechnol.
29(6): 354-360.
Idris, M.N., Daud,
A.R. & Othman, N.K. 2014. Efficiency of benzyl dimethyl (2-hydroxyethyl)
ammonium chloride as corrosion inhibitor in acetic acid. Australian
Journal of Basic and Applied Sciences 8(15): 174-179.
Kakooei, S., Ismail,
M.C. & Ariwahjodi, B. 2012. Mechanism of microbiologically
influenced corrosion: A review. World Applied Sciences Journal
17(4): 524-531.
Langumier, M.,
Sabot, R., Obame-Ndong, R., Jeannin, M., Sablé, S. & Refait,
P. 2009. Formation of Fe(III)-containing mackinawite from hydroxysulphate
green rust by sulphate reducing bacteria. Corrosion Science
51(11): 2694- 2702.
Mahat, N.A., Othman,
N.K., Sahrani, F.K. & Idris, M.N. 2015. Inhibition of consortium
sulfate reducing bacteria from crude oil for carbon steel protection.
Sains Malaysiana 44(11): 1587-1591.
Rusling, J.F. 1997.
Molecular aspects of electron transfer at electrodes in micellar
solutions. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 123-124(0): 81- 88.
Sass, H., Ramamoorthy,
S., Yarwood, C., Langner, H., Schumann, P., Kroppenstedt, R.M.,
Spring, S. & Rosenzweig, R.F. 2009. Desulfovibrio idahonensis
sp. Nov., sulfate-reducing bacteria isolated from a metal
(Loid)-contaminated freshwater sediment. International Journal
of Systematic and Evolutionary Microbiology 59(9): 2208-2214.
Sheng, G-P., Yu,
H-Q. & Li, X-Y. 2010. Extracellular polymeric substances (EPS)
of microbial aggregates in biological wastewater treatment systems:
A review. Biotechnology Advances 28(6): 882-894.
Stipaničev,
M., Turcu, F., Esnault, L., Schweitzer, E.W., Kilian, R. &
Basseguy, R. 2013. Corrosion behavior of carbon steel in presence
of sulfate-reducing bacteria in seawater environment. Electrochimica
Acta 113(0): 390-406.
Wen, J., Zhao,
K., Gu, T. & Raad, I.I. 2009. A green biocide enhancer for
the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon
steel surfaces using glutaraldehyde. International Biodeterioration
& Biodegradation 63(8): 1102-1106.
Xu, D., Wen, J.,
Fu, W., Gu, T. & Raad, I. 2011a. D-amino acids for the enhancement
of a binary biocide cocktail consisting of THPS and EDDS against
an SRB biofilm. World Journal of Microbiology and Biotechnology
28(4): 1641-1646.
Xu, J., Wang, K.,
Sun, C., Wang, F., Li, X., Yang, J. & Yu, C. 2011b. The effects
of sulfate reducing bacteria on corrosion of carbon steel Q235
under simulated disbonded coating by using electrochemical impedance
spectroscopy. Corrosion Science 53(4): 1554-1562.
Yemashova, N.,
Murygina, V., Zhukov, D., Zakharyantz, A., Gladchenko, M., Appanna,
V. & Kalyuzhnyi, S. 2007. Biodeterioration of crude oil and
oil derived products: A review. Reviews in Environmental Science
and Bio/ Technology 6(4): 315-337.
*Corresponding author; email: nazriselama@gmail.com