Sains Malaysiana 45(12)(2016): 1835–1841

http://dx.doi.org/10.17576/jsm-2016-4512-07  

 

Perlindungan Biokakisan Keluli Karbon Akibat Bakteria Penurun Sulfat yang Dipencil daripada Minyak Mentah Tropika

(Biocorrosion Protection of Carbon Steel due to Isolated Sulfate-Reducing Bacteria from Tropical Crude Oil)

MOHD NAZRI IDRIS1,2*, ABDUL RAZAK DAUD1, NURAKMA MAHAT1, FATHUL KARIM SAHRANI3 & NORINSAN KAMIL OTHMAN1

 

1Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Pengajian Kejuruteraan Bahan dan Sumber Mineral, Universiti Sains Malaysia,

Kampus Kejuruteraan, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

3Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 5 February 2016/Accepted: 26 May 2016

 

ABSTRAK

Ancaman biokakisan akibat aktiviti bakteria penurun sulfat (SRB) pada saluran paip keluli karbon dalam industri petroleum boleh menjejaskan kelancaran aliran pengangkutan minyak mentah dan meningkatkan kos pengoperasian. Usaha bagi melindungi keluli karbon serta pengawalan SRB masih memerlukan kajian yang berterusan. Dalam kajian ini, keberkesanan tetrametilamonium bromida (TMB), karboksimetil trimetilamonium (BTN) dan benzalkonium klorida (BKC) bagi melindungi keluli karbon di dalam persekitaran yang mengandungi SRB diuji melalui kaedah pengutuban elektrokimia dinamik (PED) dan morfologi keluli karbon dianalisis menggunakan mikroskop elektron imbasan. Analisis PED mendapati penggunaan TMB, BTN dan BKC masing-masing berupaya mengurangkan kadar kakisan sehingga 0.13, 0.56 dan 0.17 mm/thn berbanding 8.91 mm/thn pada larutan kawalan yang mengandungi SRB. Morfologi permukaan biofilem mengesahkan kadar pertumbuhan SRB serta hasilan metabolisme bakteria ini turut mengalami penyusutan. Kajian ini menunjukkan dua mekanisme kawalan kakisan didapati berlaku iaitu mekanisme perencatan kakisan melalui penjerapan sebatian amonium kuaterner pada permukaan keluli karbon serta berlakunya proses tindak balas mitigasi sebatian ini dengan bakteria SRB. Kesimpulannya, TMB, BTN dan BKC didapati berupaya melindungi keluli karbon daripada mengalami kakisan akibat aktiviti SRB.

 

Kata kunci: Bakteria penurun sulfat; biokakisan; keluli karbon

 

ABSTRACT

Biocorrosion menace of carbon steel pipeline in petroleum industry attributed to sulfate-reducing bacteria (SRB) activity is disrupting the crude oil transportation process and increase the operational cost. Efforts for protecting the carbon steel pipeline and controlling the SRB activities are continuously being researched. In this work, the effectiveness of tetramethylammonium bromide (TMB), carboxymethyl trimethylammonium (BTN) and benzalkonium chloride (BKC) for protecting carbon steel in environment containing SRB was studied by potential dynamic polarization (PED) method and the morphology of carbon steel surface was analyzed by scanning electron microscope. PED indicated that TMB, BTN and BKC were capable of reducing the corrosion rate to 0.13, 0.56 and 0.17 mm/yr, respectively, as compared with 8.91 mm/yr of control medium, which contained SRB. The morphology of surface biofilm proven that the rate of SRB growth and their metabolism product has also been reduced. This study suggested that there are two mechanisms of corrosion protection i.e. the present quaternary ammonium compounds inhibited the corrosion process on account of adsorption mechanism, meanwhile the mitigation process of SRB and their activities occurred due to interaction process between the quaternary ammonium compounds and SRB itself. In conclusion, TMB, BTN and BKC are able to protect the carbon steel from actively corroding due to SRB activities.

 

Keywords: Biocorrosion; carbon steel; sulfate-reducing bacteria

REFERENCES

Abdullah, A., Yahaya, N., Md Noor, N. & Mohd Rasol, R. 2014. Microbial corrosion of API 5L X-70 carbon steel by ATCC 7757 and consortium of sulfate-reducing bacteria. Journal of Chemistry 2014(1): 1-7.

Ahmad, Z. 2006. Principles of Corrosion Engineering and Corrosion Control. Oxford: Butterworth-Heinemann.

Al-Jaroudi, S.S., Ul-Hamid, A. & Al-Gahtani, M.M. 2011. Failure of cruide oil pipeline due to microbiologically induced corrosion. Corrosion Engineering, Science and Technology 46(4): 568-579.

Alabbas, F.M., Spear, J.R., Kakpovbia, A., Balhareth, N.M., Olson, D.L. & Mishra, B. 2012. Bacterial attachment to metal substrate and its effects on microbiologically-influenced corrosion in transporting hydrocarbon pipeline. Journal of Pipeline Engineering 11(3): 63-72.

Badawi, A.M., Hegazy, M.A., El-Sawy, A.A., Ahmed, H.M. & Kamel, W.M. 2010. Novel quaternary ammonium hydroxide cationic surfactants as corrosion inhibitors for carbon steel and as biocides for sulfate reducing bacteria (SRB). Materials Chemistry and Physics 124(1): 458-465.

Boivin, J. 1995. Oil industry biocides. Materials Performance 34(2): 65-68.

Davidova, I., Hicks, M.S., Fedorak, P.M. & Suflita, J.M. 2001. The influence of nitrate on microbial processes in oil industry production waters. J. Ind. Microbiol. Biotechnol. 27(2): 80- 86.

Fathy, M., Badawi, A., Mazrouaa, A.M., Mansour, N.A., Ghazy, E.A. & Elsabee, M.Z. 2013. Styrene N-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against sulfate reducing bacteria. Materials Science and Engineering: C 33(7): 4063-4070.

Fink, J.K. 2013. Chapter 17 - Biocides. Dlm. Hydraulic Fracturing Chemicals and Fluids Technology, Fink, J.K. (pnyt.), Gulf Professional Publishing. hlm. 193-203.

Gardner, L.R. & Stewart, P.S. 2002. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J. Ind. Microbiol. Biotechnol. 29(6): 354-360.

Idris, M.N., Daud, A.R. & Othman, N.K. 2014. Efficiency of benzyl dimethyl (2-hydroxyethyl) ammonium chloride as corrosion inhibitor in acetic acid. Australian Journal of Basic and Applied Sciences 8(15): 174-179.

Kakooei, S., Ismail, M.C. & Ariwahjodi, B. 2012. Mechanism of microbiologically influenced corrosion: A review. World Applied Sciences Journal 17(4): 524-531.

Langumier, M., Sabot, R., Obame-Ndong, R., Jeannin, M., Sablé, S. & Refait, P. 2009. Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria. Corrosion Science 51(11): 2694- 2702.

Mahat, N.A., Othman, N.K., Sahrani, F.K. & Idris, M.N. 2015. Inhibition of consortium sulfate reducing bacteria from crude oil for carbon steel protection. Sains Malaysiana 44(11): 1587-1591.

Rusling, J.F. 1997. Molecular aspects of electron transfer at electrodes in micellar solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 123-124(0): 81- 88.

Sass, H., Ramamoorthy, S., Yarwood, C., Langner, H., Schumann, P., Kroppenstedt, R.M., Spring, S. & Rosenzweig, R.F. 2009. Desulfovibrio idahonensis sp. Nov., sulfate-reducing bacteria isolated from a metal (Loid)-contaminated freshwater sediment. International Journal of Systematic and Evolutionary Microbiology 59(9): 2208-2214.

Sheng, G-P., Yu, H-Q. & Li, X-Y. 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances 28(6): 882-894.

Stipaničev, M., Turcu, F., Esnault, L., Schweitzer, E.W., Kilian, R. & Basseguy, R. 2013. Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment. Electrochimica Acta 113(0): 390-406.

Wen, J., Zhao, K., Gu, T. & Raad, I.I. 2009. A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. International Biodeterioration & Biodegradation 63(8): 1102-1106.

Xu, D., Wen, J., Fu, W., Gu, T. & Raad, I. 2011a. D-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm. World Journal of Microbiology and Biotechnology 28(4): 1641-1646.

Xu, J., Wang, K., Sun, C., Wang, F., Li, X., Yang, J. & Yu, C. 2011b. The effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating by using electrochemical impedance spectroscopy. Corrosion Science 53(4): 1554-1562.

Yemashova, N., Murygina, V., Zhukov, D., Zakharyantz, A., Gladchenko, M., Appanna, V. & Kalyuzhnyi, S. 2007. Biodeterioration of crude oil and oil derived products: A review. Reviews in Environmental Science and Bio/ Technology 6(4): 315-337.

 

 

*Corresponding author; email: nazriselama@gmail.com

 

previous