Sains Malaysiana 45(12)(2016): 1905–1912
http://dx.doi.org/10.17576/jsm-2016-4512-15
Pergerakan
Kadmium (Cd) melalui
Tanah Baki Granit Terpadat Menggunakan Kaedah Kolum Turasan Mini
(The Movement of Cadmium (Cd) through Compacted
Granitic Residual Soil using Mini Column Infiltration Technique)
NUR ‘AISHAH
ZARIME*
& WAN ZUHAIRI WAN
YAACOB
Program
Geologi, Pusat
Pengajian Sains Sekitaran dan Sumber
Alam, Fakulti
Sains & Teknologi
Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Received:
7 June 2016/Accepted: 11 October 2016
ABSTRAK
Penyelidikan ini mengkaji tingkah
laku cadmium (Cd) melalui
tanah baki granit yang dipadatkan. Sampel tanah baki
granit telah
diambil di kawasan
Broga, Selangor dan dikaji menggunakan tiga kaedah ujian
utama iaitu;
ujian fizikal (taburan saiz butiran,
had-had Atterberg, graviti
tentu, pemadatan dan kebolehtelapan), ujian kimia (pH, bahan organik, luas permukaan spesifik (SSA) dan
kadar pertukaran
kation (CEC) serta
ujian mini kolum
turasan. Melalui ujian kolum turasan, konsep kebolehtelapan turus menurun digunakan yang melibatkan tiga faktor iaitu halaju/daya-G, ketebalan sampel dan jenis
larutan yang digunakan.
Graf lengkung bulus
menunjukkan kepekatan Cd dalam tanah baki
granit semakin
meningkat dengan
peningkatan halaju. Urutan kapasiti penjerapan semakin meningkat terhadap kadar putaran
alat emparan/daya tarikan graviti
(G); 230G>520G>920G>1440G. Pergerakan logam berat melalui tanah baki
juga meningkat dengan
peningkatan halaju/daya-G. Lengkung bulus juga menunjukkan
pergerakan Cd secara
songsang dengan ketebalan lapisan tanah di dalam kolum. Masa penembusan bagi ketebalan 20 mm juga lebih lama berbanding ketebalan 15 dan 10 mm. Manakala jumlah Cd yang terjerap oleh tanah
baki granit
dalam larutan campuran
adalah rendah
berbanding larutan tunggal (masa yang singkat untuk menembusi lengkung bulus). Tanah baki granit
juga mempunyai kapasiti
penampanan yang rendah (pHfinal = 4
- 7). Kajian ini
menunjukkan bahawa pencirian fiziko-kimia dan sifat penjerapan
tanah dengan
menggunakan ujian mini kolum turasan mempunyai
kaitan yang kuat
untuk mencirikan tanah baki granit untuk dijadikan pelapik lempung tereka bentuk.
Kata kunci:
Kadmium; lengkung
bulus; mini kolum turasan; tanah baki granit
ABSTRACT
This research investigates
the behaviour of cadmium (Cd) through compacted granite residual
soils. Granite residual soil (BGR) was collected in Broga, Selangor and was subjected to three main test; physical
test (particle size distribution, Atterberg
Limit, specific gravity, compaction and permeability), chemical
tests (pH, organic matter, specific surface area (SSA) and cation exchange capacity
(CEC)) and mini column infiltration test. Column test followed
the falling head permeability concepts where different g-force,
samples thickness and different types of solutions were used in
this study. Breakthrough curves show the concentration of Cd in
granite residual soil becomes higher with the increasing of g-force.
The adsorption capacity is increasing to the rotation rate of
the centrifugal/gravity ranked as; 230G>520G>920G>1440G.
Mobility of Cd through granite residual soil also become
higher with increasing g-force. The breakthrough curves also showed
that mobility of Cd inversely correlated with the thickness of
the soil layer in the column. Penetration time through soil thickness
20 mm was longer than the 15 and 10 mm thickness. The amount of
Cd adsorbed by granite residual soil in mixture solutions was
lower than in single solution (less time to penetrate the breakthrough
curve). Granite residual soil also has low buffering capacity
(pHfinal =
4 - 7). The study concluded that physical-chemical characterization
and sorption properties of soil using mini column infiltration
test have very good linked to characterize granite residual soils
material to functions as engineered clay liner.
Keywords: Breakthrough curve; cadmium; granite residual soil; mini
column infiltration test
REFERENCES
Alemayehu,
E. & Lennartz, B. 2009. Virgin volcanic
rocks: Kinetics and equilibrium studies for the adsorption of
cadmium from water. Journal of Hazardous Materials 169(1-3):
395-401.
Alshaebi,
F.Y., Zuhairi, W.Y.W. & Samsudin,
A.R. 2010.
Removal of arsenic from contaminated water by selected geological
natural materials. Australian Journal of Basic & Appllied
Science 4(9): 4413-4422.
Alther, G. 2002. Using organoclays to enhance carbon filtration.
Waste Management 22(5): 507-513.
Antoniadis,
V., Mckinley, J.D. & Zuhairi,
W.Y.W. 2007.
Single-element and competitive metal mobility measured with column
infiltration and batch tests. Journal of Environment Quality
60: 53-60.
Antoniadis,
V. & McKinley, J.D. 2000. Leaching tests in a laboratory centrifuge
on zinc migration in London Clay. International
Symposium on Physical Modelling and Testing in Environmental Geotechnics,
France. hlm.
50-58.
Atanassova, I. 1999. Competitive
effect of copper, zinc, cadmium, and nickel on
ion adsorption and desorption by soil clays. Water
Air Soil Pollut. 113: 115-125.
Cawley, M.R. 1999. Compacted Clay Liners: A Viable Solution for Landfill Leachate
Containment. Brigham Young University Provo,
UT
Chalermyanont,
T., Arrykul, S. & Charoenthaisong,
N. 2009.
Potential use of lateritic and marine clay soils as landfill liners
to retain heavy metals. Waste Management 29(1): 117-127.
Cheyns,
K., Mertens, J., Diels, J., Smolders,
E. & Springael, D. 2010. Monod kinetics rather than a first-order
degradation model explains atrazine fate in soil mini-columns:
Implications for pesticide fate modelling. Environmental Pollution
158(5): 1405-1411.
Devulapalli,
S.S.N. & Reddy, K.R. 1996. Effect of nonliner adsorption on contaminant transport through landfill
clay liners. Proc. 2nd International
Congress on Environmental Geotechnics, Osaka, Japan.
hlm. 473-478.
Gordon,
M.E., Huebner, P.M. & Mitchell, G.R. 1990. Regulation, construction and performance of clay-lined landfills in
Wisconsin. In Waste Containment Systems: Construction,
Regulation, and Performance, Bonaparte, R. (ed).
American Society of Civil Engineers, Reston,
VA. pp. 14-29.
Gupta, V.K., Suhas, Nayak, A., Agarwal. S., Chaudhary, M. & Tyagi, I. 2014.
Removal of Ni (II) ions from water using scrap
tire. Journal of Molecular Liquids 190: 215-222.
Kim,
Y., Kim, K., Kang, H., Kim, W., Doh,
S., Kim, D. & Kim, B. 2007. The accumulation of radiocesium
in coarse marine sediment: Effects of mineralogy and organic matter.
Marine Pollution Bulletin 54: 1341-1350.
Kouame,
I.K., Dibi, B., Koffi,
K., Savane, I. & Sandu, I. 2010. Statistical approach of assessing horizontal mobility of heavy metals
in the soil of Akouedo Landfill nearby
Ebrie Lagoon (Abidjan-Cote D’ivoire).
International Journal of Conservation Science 1(3): 149-160.
Kumar, P.R. 2006.
Contaminant transport through geotechnical centrifuge models.
Environmental Monitoring Assessment 177: 215-233.
Kyzio, J. 2002. Effect
of physical properties and cation exchange capacity on sorption
of heavy metals onto peats. Polish Journal of Environmental
Studies 11(6): 713-718.
Liew, C.Y. & Zuhairi, W.Y.W. 2010. The adsorption of lead, copper, zinc, cadmium, cobalt
and nickel in residual soils using batch and high speed centrifuge
mini column test. Seminar UKM-UNRI Ke-6.
hlm. 463-465.
Markiewicz-Patkowska, J., Hursthouse, A. & Przybyla-Kij,
H. 2005.
The interaction of heavy metals with urban soils: Sorption behaviour
of Cd, Cu, Cr, Pb and Zn with a typical
mixed brownfield deposit. Environment International 31:
513-521.
Mohan, D. &
Singh, K.P. 2002.
Single- and multi-component adsorption of cadmium and zinc using
activated carbon derived from bagasse--an agricultural waste.
Water Research 36(9): 2304-2318.
Rosli, R., Karim, A.T.A.,
Latiff, A.A.A. & Taha,
M.R. 2008.
Adsorption properties of As, Pb and Cd in
soft soil and meta-sedimentary residual soil. Engineering
Postgraduate Conference (EPC). hlm. 1-9.
Wan Zuhairi,
W.Y & Abdul Rahim, S. 2007. Sorption parameters
of Pb and Cu on natural clay soils from Selangor, Malaysia.
Sains Malaysiana
36(2): 149-157.
Wang, S. &
Nan, Z. 2009.
Copper sorption behavior of selected soils of the oasis in the
middle reaches of Heihe River Basin,
China. Soil and Sediment Contamination 18(1): 74-86.
Xie, H., Chen, Y.,
Ke, H., Tang, X. & Chen, R. 2009. Analysis of diffusion-adsorption
equivalency of landfill liner systems for organic contaminants.
Journal of Environmental Sciences 21(4): 552-560.
Yong, R.N., Zuhairi, W.Z.Y., Bentley, S.P., Harris, C. & Tan, B.K.
2001.
Partitioning of heavy metals on soil samples from column tests.
Engineering Geology 60: 307-322.
Zuhairi, W.Y.W., Samsudin, A.R. & Kong, T.B. 2008a. The sorption distribution coefficient
of lead and copper on the selected soil samples from Selangor.
Bulletin of the Geological Society of Malaysia 54: 21-25.
Zuhairi, W.Y.W., Samsudin, A.R. & Ridwan, N.
2008b.
The retention characteristics of heavy metals in natural soils
using soil column experiment. The 12th International
Conference of International Association for Computer Methods and
Advances in Geomechanics (IACMAG), Goa, India, 1-6 October.
hlm. 2405-2411.
*Corresponding author;
email: aishahzarime@gmail.com