Sains Malaysiana 45(12)(2016): 1905–1912

http://dx.doi.org/10.17576/jsm-2016-4512-15

 

Pergerakan Kadmium (Cd) melalui Tanah Baki Granit Terpadat Menggunakan Kaedah Kolum Turasan Mini

(The Movement of Cadmium (Cd) through Compacted Granitic Residual Soil using Mini Column Infiltration Technique)

 

NUR ‘AISHAH ZARIME* & WAN ZUHAIRI WAN YAACOB

 

Program Geologi, Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains & Teknologi

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 7 June 2016/Accepted: 11 October 2016

 

ABSTRAK

Penyelidikan ini mengkaji tingkah laku cadmium (Cd) melalui tanah baki granit yang dipadatkan. Sampel tanah baki granit telah diambil di kawasan Broga, Selangor dan dikaji menggunakan tiga kaedah ujian utama iaitu; ujian fizikal (taburan saiz butiran, had-had Atterberg, graviti tentu, pemadatan dan kebolehtelapan), ujian kimia (pH, bahan organik, luas permukaan spesifik (SSA) dan kadar pertukaran kation (CEC) serta ujian mini kolum turasan. Melalui ujian kolum turasan, konsep kebolehtelapan turus menurun digunakan yang melibatkan tiga faktor iaitu halaju/daya-G, ketebalan sampel dan jenis larutan yang digunakan. Graf lengkung bulus menunjukkan kepekatan Cd dalam tanah baki granit semakin meningkat dengan peningkatan halaju. Urutan kapasiti penjerapan semakin meningkat terhadap kadar putaran alat emparan/daya tarikan graviti (G); 230G>520G>920G>1440G. Pergerakan logam berat melalui tanah baki juga meningkat dengan peningkatan halaju/daya-G. Lengkung bulus juga menunjukkan pergerakan Cd secara songsang dengan ketebalan lapisan tanah di dalam kolum. Masa penembusan bagi ketebalan 20 mm juga lebih lama berbanding ketebalan 15 dan 10 mm. Manakala jumlah Cd yang terjerap oleh tanah baki granit dalam larutan campuran adalah rendah berbanding larutan tunggal (masa yang singkat untuk menembusi lengkung bulus). Tanah baki granit juga mempunyai kapasiti penampanan yang rendah (pHfinal = 4 - 7). Kajian ini menunjukkan bahawa pencirian fiziko-kimia dan sifat penjerapan tanah dengan menggunakan ujian mini kolum turasan mempunyai kaitan yang kuat untuk mencirikan tanah baki granit untuk dijadikan pelapik lempung tereka bentuk.

 

Kata kunci: Kadmium; lengkung bulus; mini kolum turasan; tanah baki granit

 

ABSTRACT

This research investigates the behaviour of cadmium (Cd) through compacted granite residual soils. Granite residual soil (BGR) was collected in Broga, Selangor and was subjected to three main test; physical test (particle size distribution, Atterberg Limit, specific gravity, compaction and permeability), chemical tests (pH, organic matter, specific surface area (SSA) and cation exchange capacity (CEC)) and mini column infiltration test. Column test followed the falling head permeability concepts where different g-force, samples thickness and different types of solutions were used in this study. Breakthrough curves show the concentration of Cd in granite residual soil becomes higher with the increasing of g-force. The adsorption capacity is increasing to the rotation rate of the centrifugal/gravity ranked as; 230G>520G>920G>1440G. Mobility of Cd through granite residual soil also become higher with increasing g-force. The breakthrough curves also showed that mobility of Cd inversely correlated with the thickness of the soil layer in the column. Penetration time through soil thickness 20 mm was longer than the 15 and 10 mm thickness. The amount of Cd adsorbed by granite residual soil in mixture solutions was lower than in single solution (less time to penetrate the breakthrough curve). Granite residual soil also has low buffering capacity (pHfinal = 4 - 7). The study concluded that physical-chemical characterization and sorption properties of soil using mini column infiltration test have very good linked to characterize granite residual soils material to functions as engineered clay liner.

 

Keywords: Breakthrough curve; cadmium; granite residual soil; mini column infiltration test

 

REFERENCES

 

Alemayehu, E. & Lennartz, B. 2009. Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials 169(1-3): 395-401.

Alshaebi, F.Y., Zuhairi, W.Y.W. & Samsudin, A.R. 2010. Removal of arsenic from contaminated water by selected geological natural materials. Australian Journal of Basic & Appllied Science 4(9): 4413-4422.

Alther, G. 2002. Using organoclays to enhance carbon filtration. Waste Management 22(5): 507-513.

Antoniadis, V., Mckinley, J.D. & Zuhairi, W.Y.W. 2007. Single-element and competitive metal mobility measured with column infiltration and batch tests. Journal of Environment Quality 60: 53-60.

Antoniadis, V. & McKinley, J.D. 2000. Leaching tests in a laboratory centrifuge on zinc migration in London Clay. International Symposium on Physical Modelling and Testing in Environmental Geotechnics, France. hlm. 50-58.

Atanassova, I. 1999. Competitive effect of copper, zinc, cadmium, and nickel on ion adsorption and desorption by soil clays. Water Air Soil Pollut. 113: 115-125.

Cawley, M.R. 1999. Compacted Clay Liners: A Viable Solution for Landfill Leachate Containment. Brigham Young University Provo, UT

Chalermyanont, T., Arrykul, S. & Charoenthaisong, N. 2009. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals. Waste Management 29(1): 117-127.

Cheyns, K., Mertens, J., Diels, J., Smolders, E. & Springael, D. 2010. Monod kinetics rather than a first-order degradation model explains atrazine fate in soil mini-columns: Implications for pesticide fate modelling. Environmental Pollution 158(5): 1405-1411.

Devulapalli, S.S.N. & Reddy, K.R. 1996. Effect of nonliner adsorption on contaminant transport through landfill clay liners. Proc. 2nd International Congress on Environmental Geotechnics, Osaka, Japan. hlm. 473-478.

Gordon, M.E., Huebner, P.M. & Mitchell, G.R. 1990. Regulation, construction and performance of clay-lined landfills in Wisconsin. In Waste Containment Systems: Construction, Regulation, and Performance, Bonaparte, R. (ed). American Society of Civil Engineers, Reston, VA. pp. 14-29.

Gupta, V.K., Suhas, Nayak, A., Agarwal. S., Chaudhary, M. & Tyagi, I. 2014. Removal of Ni (II) ions from water using scrap tire. Journal of Molecular Liquids 190: 215-222.

Kim, Y., Kim, K., Kang, H., Kim, W., Doh, S., Kim, D. & Kim, B. 2007. The accumulation of radiocesium in coarse marine sediment: Effects of mineralogy and organic matter. Marine Pollution Bulletin 54: 1341-1350.

Kouame, I.K., Dibi, B., Koffi, K., Savane, I. & Sandu, I. 2010. Statistical approach of assessing horizontal mobility of heavy metals in the soil of Akouedo Landfill nearby Ebrie Lagoon (Abidjan-Cote D’ivoire). International Journal of Conservation Science 1(3): 149-160.

Kumar, P.R. 2006. Contaminant transport through geotechnical centrifuge models. Environmental Monitoring Assessment 177: 215-233.

Kyzio, J. 2002. Effect of physical properties and cation exchange capacity on sorption of heavy metals onto peats. Polish Journal of Environmental Studies 11(6): 713-718.

Liew, C.Y. & Zuhairi, W.Y.W. 2010. The adsorption of lead, copper, zinc, cadmium, cobalt and nickel in residual soils using batch and high speed centrifuge mini column test. Seminar UKM-UNRI Ke-6. hlm. 463-465.

Markiewicz-Patkowska, J., Hursthouse, A. & Przybyla-Kij, H. 2005. The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environment International 31: 513-521.

Mohan, D. & Singh, K.P. 2002. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse--an agricultural waste. Water Research 36(9): 2304-2318.

Rosli, R., Karim, A.T.A., Latiff, A.A.A. & Taha, M.R. 2008. Adsorption properties of As, Pb and Cd in soft soil and meta-sedimentary residual soil. Engineering Postgraduate Conference (EPC). hlm. 1-9.

Wan Zuhairi, W.Y & Abdul Rahim, S. 2007. Sorption parameters of Pb and Cu on natural clay soils from Selangor, Malaysia. Sains Malaysiana 36(2): 149-157.

Wang, S. & Nan, Z. 2009. Copper sorption behavior of selected soils of the oasis in the middle reaches of Heihe River Basin, China. Soil and Sediment Contamination 18(1): 74-86.

Xie, H., Chen, Y., Ke, H., Tang, X. & Chen, R. 2009. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants. Journal of Environmental Sciences 21(4): 552-560.

Yong, R.N., Zuhairi, W.Z.Y., Bentley, S.P., Harris, C. & Tan, B.K. 2001. Partitioning of heavy metals on soil samples from column tests. Engineering Geology 60: 307-322.

Zuhairi, W.Y.W., Samsudin, A.R. & Kong, T.B. 2008a. The sorption distribution coefficient of lead and copper on the selected soil samples from Selangor. Bulletin of the Geological Society of Malaysia 54: 21-25.

Zuhairi, W.Y.W., Samsudin, A.R. & Ridwan, N. 2008b. The retention characteristics of heavy metals in natural soils using soil column experiment. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 1-6 October. hlm. 2405-2411.

 

 

*Corresponding author; email: aishahzarime@gmail.com

 

previous