Sains Malaysiana 45(12)(2016):
1913–1921
http://dx.doi.org/10.17576/jsm-2016-4512-16
Pengoptimuman Proses Penyemperitan
Gentian Karbon Terkisar dan Polipropilena Bagi Komposit Polimer
Pengalir
(Optimization of Milled Carbon Fibre Extrusion
and Polypropylene Process for Conductive Polymer Composite)
NABILAH AFIQAH
MOHD
RADZUAN1*,
ABU
BAKAR
SULONG1,2
& MAHENDRA
RAO SOMALU1
1Institut Sel Fuel, Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor Darul Ehsan
Malaysia
2Jabatan Kejuruteraan Mekanik dan
Bahan, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
Received:
14 April 2016/Accepted: 12 October 2016
ABSTRAK
Proses penyemperitan merupakan
salah satu proses pra-pencampuran yang dapat membantu meningkatkan
tahap serakan bahan pengalir dalam komposit polimer pengalir (CPC).
Tahap keberaliran elektrik dilihat tidak begitu memuaskan walaupun
telah melalui proses serakan melalui pengacuan mekanik. Kajian
ini dijalankan bagi mengoptimumkan proses penyemperitan bahan
gentian karbon terkisar (MCF)
dan polipropilena (PP) iaitu suhu penyemperitan dan halaju
putaran melalui kaedah reka bentuk eksperimen (Taguchi). Susunan
orthogonal Taguchi L9 digunakan bagi menentukan aras yang
paling optimum serta menjalankan analisis varian bagi memperoleh
nilai keberaliran elektrik yang paling baik. Pengoptimuman parameter
pada suhu penyemperitan 210ºC hingga 250ºC dan halaju putaran
50 hingga 90 rpm menggunakan komposisi bahan sebanyak 80 % bt.
MCF dan
20 % bt. PP dengan tahap keberaliran elektrik meningkat pada tahap
maksimum 3.67 S/cm. Pengoptimuman parameter ini menunjukkan bahawa
reka bentuk eksperimen yang terhasil mampu menghasilkan nilai
keberaliran elektrik yang tinggi serta mempunyai sifat mekanik
yang baik.
Kata kunci: Gentian karbon
terkisar; kaedah reka bentuk eksperimen; keberaliran elektrik;
penyemperitan; ujian mekanik
ABSTRACT
The extrusion process is one
of the pre-mixing processes that aid in improving the filler dispersion
in conductive polymer composite (CPC). Electrical conductivity
level still needs much improvement in mixing process through mechanical
mixer. This study was conducted to optimise the extrusion process
parameters (temperature and rotational speed) of milled carbon
fibre (MCF)
and polypropylene (PP) using experimental design (Taguchi
method). Orthogonal array design of L9 is adapted in this study to
determine the optimum level and measuring performance via variance
analysis to obtain the maximum electrical conductivity. The optimum
working conditions for 80 wt. % of MCF and 20 wt. % of PP composition
were determined at the extrusion temperature of 230ºC to 250ºC
and a rotational speed of 50 to 90 rpm in which the electrical
conductivity increases to the maximum value of 3.67 S/cm. Optimisation
of these parameters is expected to produce a robust design with
improved electrical conductivity and mechanical properties.
Keywords: Design experiment; electrical conductivity; extrusion;
mechanical testing; milled carbon fibre
REFERENCES
Antunes, R.A., de Oliveira,
M.C.L., Ett, G. & Ett, V. 2011. Carbon materials in composite
bipolar plates for polymer electrolyte membrane fuel cells: A
review of the main challenges to improve electrical performance.
Journal of Power Sources 196(6): 2945-2961.
Arslanoglu, N. &
Yigit, A. 2016. Experimental investigation of radiation effect
on human thermal comfort by Taguchi method. Applied Thermal
Engineering 92: 18-23.
Ausias, G., Jarrin,
J. & Vincent, M. 1996. Optimization of the tube-extrusion
die for short-fiber-filled polymers. Composites Science and
Technology 56(7): 719-724.
Balberg, I. 2002. A
comprehensive picture of the electrical phenomena in carbon black-polymer
composites. Carbon 40(2): 139-143.
Balogun, Y.A. &
Buchanan, R.C. 2010. Enhanced percolative properties from partial
solubility dispersion of filler phase in conducting polymer composites
(CPCs). Composites Science and Technology 70(6): 892-900.
Barton, R., Keith, J.
& King, J. 2008. Electrical conductivity modeling of multiple
carbon fillers in liquid crystal polymer composites for fuel cell
bipolar plate applications. J. New Mater. Electrochem. Syst.
11(3): 181.
Barton, R., Keith, J.
& King, J. 2007. Development and modeling of electrically
conductive carbon filled liquid crystal polymer composites for
fuel cell bipolar plate applications. Journal of New Materials
for Electrochemical Systems 10(4): 225.
Chua, M.I.H., Sulong, A.B., Abdullah, M.F. & Muhamad, N. 2013.
Optimization of injection molding and solvent debinding parameters
of stainless steel powder (SS316L) based feedstock for metal injection
molding. Sains Malaysiana 42(12): 1743-1750.
Dweiri, R. & Sahari, J. 2008.
Microstructural image analysis and structure-electrical conductivity
relationship of single- and multiple-filler conductive composites.
Composites Science and Technology 68(7-8): 1679-1687.
Dweiri, R. & Sahari, J. 2007.
Electrical properties of carbon-based polypropylene composites
for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC).
Journal of Power Sources 171(2): 424-432.
Fan, Z. & Advani, S.G. 2005.
Characterization of orientation state of carbon nanotubes in shear
flow. Polymer 46(14): 5232-5240.
Feller, J.F., Chauvelon, P., Linossier,
I. & Glouannec, P. 2003. Characterization of electrical and
thermal properties of extruded tapes of thermoplastic conductive
polymer composites (CPC). Polymer Testing 22(7): 831-837.
Feller, J.F., Linossier, I. &
Grohens, Y. 2002. Conductive polymer composites: Comparative study
of poly(ester)-short carbon fibres and poly(epoxy)-short carbon
fibres mechanical and electrical properties. Materials Letters
57(1): 64-71.
Hine, P.J., Davidson, N., Duckett,
R.A. & Ward, I.M. 1995. Measuring the fibre orientation and
modelling the elastic properties of injection-moulded long-glass-fibre-reinforced
nylon. Composites Science and Technology 53(2): 125-131.
Hobbie, E.K., Wang, H., Kim, H.,
Lin-Gibson, S. & Grulke, E.A. 2003. Orientation of carbon
nanotubes in a sheared polymer melt. Physics of Fluids (1994-present)
15(5): 1196-1202.
Hu, N., Masuda, Z., Yamamoto, G.,
Fukunaga, H., Hashida, T. & Qiu, J. 2008. Effect of fabrication
process on electrical properties of polymer/multi-wall carbon
nanotube nanocomposites. Composites Part A: Applied Science
and Manufacturing 39(5): 893-903.
Ibrahim, M., Muhamad, N., Sulong,
A.B., Jamaludin, K., Ahmada, S. & Norb, N. 2010. Optimization
of micro metal injection molding for highest green strength by
using Taguchi method. International Journal of Mechanical
and Materials Engineering 5(2): 282-289.
Jimenez, G.A. & Jana, S.C. 2007.
Electrically conductive polymer nanocomposites of polymethylmethacrylate
and carbon nanofibers prepared by chaotic mixing. Composites
Part A: Applied Science and Manufacturing 38(3): 983-993.
Kakati, B.K., Sathiyamoorthy, D.
& Verma, A. 2011. Semi-empirical modeling of electrical conductivity
for composite bipolar plate with multiple reinforcements. International
Journal of Hydrogen Energy 36(22): 14851-14857.
Kakati, B.K., Yamsani, V.K., Dhathathreyan,
K.S., Sathiyamoorthy, D. & Verma, A. 2009. The electrical
conductivity of a composite bipolar plate for fuel cell applications.
Carbon 47(10): 2413-2418.
Kaytakoğlu, S. & Akyalçın,
L. 2007. Optimization of parametric performance of a PEMFC. International
Journal of Hydrogen Energy 32(17): 4418-4423.
Kim, Y.A., Hayashi, T., Endo, M.,
Gotoh, Y., Wada, N. & Seiyama, J. 2006. Fabrication of aligned
carbon nanotube-filled rubber composite. Scripta Materialia
54(1): 31-35.
Köpplmayr, T., Milosavljevic, I.,
Aigner, M., Hasslacher, R., Plank, B., Salaberger, D. & Miethlinger,
J. 2013. Influence of fiber orientation and length distribution
on the rheological characterization of glass-fiber-filled polypropylene.
Polymer Testing 32(3): 535-544.
Li, Y., Liu, H., Dai, K., Zheng,
G., Liu, C., Chen, J. & Shen, C. 2015. Tuning of vapor sensing
behaviors of eco-friendly conductive polymer composites utilizing
ramie fiber. Sensors and Actuators B: Chemical 221: 1279-1289.
Merzouki, A. & Haddaoui, N.
2012. Electrical conductivity modeling of polypropylene composites
filled with carbon black and acetylene black. ISRN Polymer
Science 2012: Article ID. 493065.
Nakayama, Y., Takeda, E., Shigeishi,
T., Tomiyama, H. & Kajiwara, T. 2011. Melt-mixing by novel
pitched-tip kneading disks in a co-rotating twin-screw extruder.
Chemical Engineering Science 66(1): 103-110.
Pötschke, P., Bhattacharyya, A.R.
& Janke, A. 2004. Melt mixing of polycarbonate with multiwalled
carbon nanotubes: Microscopic studies on the state of dispersion.
European Polymer Journal 40(1): 137-148.
Pourjafar, S., Jahanshahi, M. &
Rahimpour, A. 2013. Optimization of TiO2 modified poly(vinyl alcohol)
thin film composite nanofiltration membranes using Taguchi method.
Desalination 315: 107-114.
Suherman, H., Sahari, J. & Sulong,
A.B. 2013. Effect of small-sized conductive filler on the properties
of an epoxy composite for a bipolar plate in a PEMFC. Ceramics
International 39(6): 7159-7166.
Suherman, H., Sulong, A.B. &
Sahari, J. 2013. Effect of the compression molding parameters
on the in-plane and through-plane conductivity of carbon nanotubes/graphite/
epoxy nanocomposites as bipolar plate material for a polymer electrolyte
membrane fuel cell. Ceramics International 39(2): 1277-1284.
Sulong, A.B., Ramli, M.I., Hau,
S.L., Sahari, J., Muhamad, N. & Suherman, H. 2013. Rheological
and mechanical properties of carbon nanotube/Graphite/SS316L/polypropylene
nanocomposite for a conductive polymer composite. Composites
Part B: Engineering 50(0): 54-61.
Taherian, R., Hadianfard, M.J. &
Golikand, A.N. 2013. A new equation for predicting electrical
conductivity of carbon-filled polymer composites used for bipolar
plates of fuel cells. Journal of Applied Polymer Science
128(3): 1497-1509.
Taipalus, R., Harmia, T., Zhang,
M.Q. & Friedrich, K. 2001. The electrical conductivity of
carbon-fibre-reinforced polypropylene/polyaniline complex-blends:
Experimental characterisation and modelling. Composites Science
and Technology 61(6): 801-814.
Takeda, T., Shindo, Y., Kuronuma,
Y. & Narita, F. 2011. Modeling and characterization of the
electrical conductivity of carbon nanotube-based polymer composites.
Polymer 52(17): 3852-3856.
Tang, W., Santare, M.H. & Advani,
S.G. 2003. Melt processing and mechanical property characterization
of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE)
composite films. Carbon 41(14): 2779-2785.
Tungjitpornkull, S. & Sombatsompop,
N. 2009. Processing technique and fiber orientation angle affecting
the mechanical properties of E-glass fiber reinforced wood/PVC
composites. Journal of Materials Processing Technology
209(6): 3079- 3088.
Wang, J., Geng, C., Luo, F., Liu,
Y., Wang, K., Fu, Q. & He, B. 2011. Shear induced fiber orientation,
fiber breakage and matrix molecular orientation in long glass
fiber reinforced polypropylene composites. Materials Science
and Engineering: A 528(7-8): 3169-3176.
Yusoff, M., Zuhri, M., Salit, M.S.,
Ismail, N. & Wirawan, R. 2010. Mechanical properties of short
random oil palm fibre reinforced epoxy composites. Sains Malaysiana
39(1): 87-92.
Zakaria, M.Y.,
Sulong, A.B., Sahari, J. & Suherman, H. 2015. Effect of the
addition of milled carbon fiber as a secondary filler on the electrical
conductivity of graphite/epoxy composites for electrical conductive
material. Composites Part B: Engineering 83: 75-80.
*Corresponding author;
email: afiqahmradzuan@gmail.com