Sains Malaysiana 45(12)(2016): 1913–1921

http://dx.doi.org/10.17576/jsm-2016-4512-16

 

Pengoptimuman Proses Penyemperitan Gentian Karbon Terkisar dan Polipropilena Bagi Komposit Polimer Pengalir

(Optimization of Milled Carbon Fibre Extrusion and Polypropylene Process for Conductive Polymer Composite)

 

NABILAH AFIQAH MOHD RADZUAN1*, ABU BAKAR SULONG1,2 & MAHENDRA

RAO SOMALU1

 

1Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan

Malaysia

 

2Jabatan Kejuruteraan Mekanik dan Bahan, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 14 April 2016/Accepted: 12 October 2016

 

ABSTRAK

Proses penyemperitan merupakan salah satu proses pra-pencampuran yang dapat membantu meningkatkan tahap serakan bahan pengalir dalam komposit polimer pengalir (CPC). Tahap keberaliran elektrik dilihat tidak begitu memuaskan walaupun telah melalui proses serakan melalui pengacuan mekanik. Kajian ini dijalankan bagi mengoptimumkan proses penyemperitan bahan gentian karbon terkisar (MCF) dan polipropilena (PP) iaitu suhu penyemperitan dan halaju putaran melalui kaedah reka bentuk eksperimen (Taguchi). Susunan orthogonal Taguchi L9 digunakan bagi menentukan aras yang paling optimum serta menjalankan analisis varian bagi memperoleh nilai keberaliran elektrik yang paling baik. Pengoptimuman parameter pada suhu penyemperitan 210ºC hingga 250ºC dan halaju putaran 50 hingga 90 rpm menggunakan komposisi bahan sebanyak 80 % bt. MCF dan 20 % bt. PP dengan tahap keberaliran elektrik meningkat pada tahap maksimum 3.67 S/cm. Pengoptimuman parameter ini menunjukkan bahawa reka bentuk eksperimen yang terhasil mampu menghasilkan nilai keberaliran elektrik yang tinggi serta mempunyai sifat mekanik yang baik.

 

Kata kunci: Gentian karbon terkisar; kaedah reka bentuk eksperimen; keberaliran elektrik; penyemperitan; ujian mekanik

 

ABSTRACT

The extrusion process is one of the pre-mixing processes that aid in improving the filler dispersion in conductive polymer composite (CPC). Electrical conductivity level still needs much improvement in mixing process through mechanical mixer. This study was conducted to optimise the extrusion process parameters (temperature and rotational speed) of milled carbon fibre (MCF) and polypropylene (PP) using experimental design (Taguchi method). Orthogonal array design of L9 is adapted in this study to determine the optimum level and measuring performance via variance analysis to obtain the maximum electrical conductivity. The optimum working conditions for 80 wt. % of MCF and 20 wt. % of PP composition were determined at the extrusion temperature of 230ºC to 250ºC and a rotational speed of 50 to 90 rpm in which the electrical conductivity increases to the maximum value of 3.67 S/cm. Optimisation of these parameters is expected to produce a robust design with improved electrical conductivity and mechanical properties.

 

Keywords: Design experiment; electrical conductivity; extrusion; mechanical testing; milled carbon fibre

 

REFERENCES

Antunes, R.A., de Oliveira, M.C.L., Ett, G. & Ett, V. 2011. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 196(6): 2945-2961.

Arslanoglu, N. & Yigit, A. 2016. Experimental investigation of radiation effect on human thermal comfort by Taguchi method. Applied Thermal Engineering 92: 18-23.

Ausias, G., Jarrin, J. & Vincent, M. 1996. Optimization of the tube-extrusion die for short-fiber-filled polymers. Composites Science and Technology 56(7): 719-724.

Balberg, I. 2002. A comprehensive picture of the electrical phenomena in carbon black-polymer composites. Carbon 40(2): 139-143.

Balogun, Y.A. & Buchanan, R.C. 2010. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs). Composites Science and Technology 70(6): 892-900.

Barton, R., Keith, J. & King, J. 2008. Electrical conductivity modeling of multiple carbon fillers in liquid crystal polymer composites for fuel cell bipolar plate applications. J. New Mater. Electrochem. Syst. 11(3): 181.

Barton, R., Keith, J. & King, J. 2007. Development and modeling of electrically conductive carbon filled liquid crystal polymer composites for fuel cell bipolar plate applications. Journal of New Materials for Electrochemical Systems 10(4): 225.

Chua, M.I.H., Sulong, A.B., Abdullah, M.F. & Muhamad, N. 2013. Optimization of injection molding and solvent debinding parameters of stainless steel powder (SS316L) based feedstock for metal injection molding. Sains Malaysiana 42(12): 1743-1750.

Dweiri, R. & Sahari, J. 2008. Microstructural image analysis and structure-electrical conductivity relationship of single- and multiple-filler conductive composites. Composites Science and Technology 68(7-8): 1679-1687.

Dweiri, R. & Sahari, J. 2007. Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). Journal of Power Sources 171(2): 424-432.

Fan, Z. & Advani, S.G. 2005. Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46(14): 5232-5240.

Feller, J.F., Chauvelon, P., Linossier, I. & Glouannec, P. 2003. Characterization of electrical and thermal properties of extruded tapes of thermoplastic conductive polymer composites (CPC). Polymer Testing 22(7): 831-837.

Feller, J.F., Linossier, I. & Grohens, Y. 2002. Conductive polymer composites: Comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Materials Letters 57(1): 64-71.

Hine, P.J., Davidson, N., Duckett, R.A. & Ward, I.M. 1995. Measuring the fibre orientation and modelling the elastic properties of injection-moulded long-glass-fibre-reinforced nylon. Composites Science and Technology 53(2): 125-131.

Hobbie, E.K., Wang, H., Kim, H., Lin-Gibson, S. & Grulke, E.A. 2003. Orientation of carbon nanotubes in a sheared polymer melt. Physics of Fluids (1994-present) 15(5): 1196-1202.

Hu, N., Masuda, Z., Yamamoto, G., Fukunaga, H., Hashida, T. & Qiu, J. 2008. Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Composites Part A: Applied Science and Manufacturing 39(5): 893-903.

Ibrahim, M., Muhamad, N., Sulong, A.B., Jamaludin, K., Ahmada, S. & Norb, N. 2010. Optimization of micro metal injection molding for highest green strength by using Taguchi method. International Journal of Mechanical and Materials Engineering 5(2): 282-289.

Jimenez, G.A. & Jana, S.C. 2007. Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A: Applied Science and Manufacturing 38(3): 983-993.

Kakati, B.K., Sathiyamoorthy, D. & Verma, A. 2011. Semi-empirical modeling of electrical conductivity for composite bipolar plate with multiple reinforcements. International Journal of Hydrogen Energy 36(22): 14851-14857.

Kakati, B.K., Yamsani, V.K., Dhathathreyan, K.S., Sathiyamoorthy, D. & Verma, A. 2009. The electrical conductivity of a composite bipolar plate for fuel cell applications. Carbon 47(10): 2413-2418.

Kaytakoğlu, S. & Akyalçın, L. 2007. Optimization of parametric performance of a PEMFC. International Journal of Hydrogen Energy 32(17): 4418-4423.

Kim, Y.A., Hayashi, T., Endo, M., Gotoh, Y., Wada, N. & Seiyama, J. 2006. Fabrication of aligned carbon nanotube-filled rubber composite. Scripta Materialia 54(1): 31-35.

Köpplmayr, T., Milosavljevic, I., Aigner, M., Hasslacher, R., Plank, B., Salaberger, D. & Miethlinger, J. 2013. Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polymer Testing 32(3): 535-544.

Li, Y., Liu, H., Dai, K., Zheng, G., Liu, C., Chen, J. & Shen, C. 2015. Tuning of vapor sensing behaviors of eco-friendly conductive polymer composites utilizing ramie fiber. Sensors and Actuators B: Chemical 221: 1279-1289.

Merzouki, A. & Haddaoui, N. 2012. Electrical conductivity modeling of polypropylene composites filled with carbon black and acetylene black. ISRN Polymer Science 2012: Article ID. 493065.

Nakayama, Y., Takeda, E., Shigeishi, T., Tomiyama, H. & Kajiwara, T. 2011. Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-screw extruder. Chemical Engineering Science 66(1): 103-110.

Pötschke, P., Bhattacharyya, A.R. & Janke, A. 2004. Melt mixing of polycarbonate with multiwalled carbon nanotubes: Microscopic studies on the state of dispersion. European Polymer Journal 40(1): 137-148.

Pourjafar, S., Jahanshahi, M. & Rahimpour, A. 2013. Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination 315: 107-114.

Suherman, H., Sahari, J. & Sulong, A.B. 2013. Effect of small-sized conductive filler on the properties of an epoxy composite for a bipolar plate in a PEMFC. Ceramics International 39(6): 7159-7166.

Suherman, H., Sulong, A.B. & Sahari, J. 2013. Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/ epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceramics International 39(2): 1277-1284.

Sulong, A.B., Ramli, M.I., Hau, S.L., Sahari, J., Muhamad, N. & Suherman, H. 2013. Rheological and mechanical properties of carbon nanotube/Graphite/SS316L/polypropylene nanocomposite for a conductive polymer composite. Composites Part B: Engineering 50(0): 54-61.

Taherian, R., Hadianfard, M.J. & Golikand, A.N. 2013. A new equation for predicting electrical conductivity of carbon-filled polymer composites used for bipolar plates of fuel cells. Journal of Applied Polymer Science 128(3): 1497-1509.

Taipalus, R., Harmia, T., Zhang, M.Q. & Friedrich, K. 2001. The electrical conductivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: Experimental characterisation and modelling. Composites Science and Technology 61(6): 801-814.

Takeda, T., Shindo, Y., Kuronuma, Y. & Narita, F. 2011. Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polymer 52(17): 3852-3856.

Tang, W., Santare, M.H. & Advani, S.G. 2003. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41(14): 2779-2785.

Tungjitpornkull, S. & Sombatsompop, N. 2009. Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites. Journal of Materials Processing Technology 209(6): 3079- 3088.

Wang, J., Geng, C., Luo, F., Liu, Y., Wang, K., Fu, Q. & He, B. 2011. Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites. Materials Science and Engineering: A 528(7-8): 3169-3176.

Yusoff, M., Zuhri, M., Salit, M.S., Ismail, N. & Wirawan, R. 2010. Mechanical properties of short random oil palm fibre reinforced epoxy composites. Sains Malaysiana 39(1): 87-92.

Zakaria, M.Y., Sulong, A.B., Sahari, J. & Suherman, H. 2015. Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material. Composites Part B: Engineering 83: 75-80.

 

 

*Corresponding author; email: afiqahmradzuan@gmail.com

 

previous