Sains Malaysiana 45(12)(2016): 1959–1968

http://dx.doi.org/10.17576/jsm-2016-4512-21

 

Analisis Kekonduksian Lebihan Superkonduktor YBa2Cu3O7-δ Ditambah Nanozarah PbO

(Excess Conductivity Analysis of PbO Nanoparticle Added YBa2Cu3O7-δ Superconductor)

 

ANNAS AL-SHARABI1, SARAH YASMIN TAJUDDIN2, AU DIYA FATIHAH WAN SAFFIEY2, SYAZANA JASMAN2, H.A. ALWI2, M.H. JUMALI2 & R. ABD-SHUKOR2*

 

1Department of Physics, Faculty of Applied Sciences, Thamar University, Thamar

Republic of Yemen

 

2School of Applied Physics, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 24 June 2016/Accepted: 4 August 2016

ABSTRAK

Kesan penambahan PbO dengan saiz 10 hingga 30 nm terhadap kekondukisan lebihan YBa2Cu3O7-δ telah dikaji. Kekonduksian lebihan ialah fluktuasi kekonduksian elektrik disebabkan oleh interaksi pasangan Cooper dengan elektron biasa berhampiran suhu genting, Tc. Sampel dengan komposisi permulaan YBa2Cu3O7-δ(PbO)x untuk x = 0.00- 0.45 peratus berat (% bt.) telah disediakan melalui tindak balas keadaan pepejal. Analisis fluktuasi dan kekonduksian lebihan menggunakan teori Aslamazov-Larkin (AL) untuk menentukan dimensi kekonduksian l telah dijalankan. Teori Lawrence-Donaich (LD) pula digunakan untuk menentukan panjang koheren ξc(0), gandingan Josephson J dan anisotropi γ = (ξab(0)/ξc(0)). Suhu genting mula adalah tertinggi (Tc mula = 94 K) untuk sampel x = 0.35. Analisis kekonduksian menunjukkan PbO menyebabkan peralihan kekonduksian daripada 2 dimensi ke 3 dimensi dengan suhu peralihan, T2D–3D tertinggi bagi sampel x = 0.20 (120 K). Model Lawrence-Donaich menunjukkan panjang koheren ξc(0) adalah terpanjang dan anisotropi terendah bagi sampel x = 0.25. Sampel ini juga menunjukkan gandingan Josephson tertinggi, J = 0.296. Dua kesan yang mungkin berlaku akibat penambahan PbO ialah pembentukan bahan bukan superkonduktor dalam sampel dan peningkatan hubungan antara butiran yang meningkatkan sifat-sifat kesuperkonduksian.

 

Kata kunci: Gandingan Josephson; kekonduksian lebihan; panjang koheren

 

ABSTRACT

The effects of nano-sized PbO (10-30 nm) addition on the excess conductivity of YBa2Cu3O7-δ have been studied. Excess conductivity is the fluctuations in conductivity due to the interaction of normal electrons with the Cooper pairs near the critical temperature, Tc. Samples with starting composition YBa2Cu3O7-δ(PbO)x for x = 0.00- 0.45 weight percent (wt. %) were prepared using the solid state reaction method. Superconducting fluctuations and excess conductivity were analyzed using the Aslamazov-Larkin (AL) theory to determine the conductivity dimensions l. The Lawrence-Donaich (LD) theory was used to determine the coherence length ξc(0), Josephson coupling J and the anisotropy γ = (ξab(0)/ξc(0)). The onset transition temperature, Tc onset was highest (Tc onset = 94 K) for the sample with x = 0.35. Conductivity analysis showed that nano-sized PbO induced transition from 2 dimensional to 3 dimensional conductivity with the highest transition temperature T2D–3D in the x = 0.20 sample. The Lawrence-Donaich model showed the longest coherence length ξc(0) and lowest anisotropy for the x = 0.25 sample. This sample also showed the highest Josephson coupling, J = 0.296. The two possible effects of nanosized PbO addition in YBa2Cu3O7-δ is the formation of non-superconducting regions and the improved inter-grains connectivity enhanced the superconducting properties.

 

Keywords: Coherence length; excess conductivity; Josephson coupling

REFERENCES

Abd-Shukor, R. & Tee, K.S. 1998. Effectiveness of bi versus pb on the superconducting properties of the TlSr2CaCu2O7 (1212) phase. J. of Mat. Sci. Lett. 17: 103-106.

Abd-Shukor, R., Kong, I., Lim, E.L., Mizan, N.A., Alwi, H.A., Jumali, M.H. & Kong, W. 2012. Enhanced critical current density of FeF2 added YBa2Cu3O7-δ. Journal of Superconductivity and Novel Magnetism 25: 957-960.

Al-Sharabi, A. & Abd-Shukor, R. 2014a. Excess conductivity analysis of Cr substituted TlSr2CaCu2O7-δ superconductor at Tl and Ca sites. Journal of Alloys and Compounds 516: 363-371.

Al-Sharabi, A. & Abd-Shukor, R. 2014b. Effect of Re substitution on the formation and fluctuation-induced conductivity of a TlSr2(Ca1-xRex)Cu2O7-δ (x = 0.05- 0.30) superconductor. Ceramics International 40: 9383-9388.

Aly, A.I.A., Ibrahim, I.H., Awad, R.A. & El-Harizy, A. 2010. Stabilization of Tl-1223 phase by arsenic substitution. Journal of Superconductivity and Novel Magnetism 23: 1325-1332.

Asmalazov, L.G. & Larkin, A.I. 1968a. The critical current of superconducting contacts in a superconductor above the critical temperature. Sov. Phys. Solid State 10: 875-880.

Asmalazov, L.G. & Larkin, A.I. 1968b. Vliyanie fluktuatsii na svoistva sverkhprovodnika pri temperaturakh vyshe kriticheskoi, Fiz. Tverd. Tela 10: 1104-1111.

Aswal, D.K., Singh, A., Sen, S., Kaur, M., Viswandham, C.S., Goswami, G.L. & Gupta, S.K. 2002. Effect of grain boundaries on paraconductivity of YBa2Cu3O7. Journal of Physics and Chemistry of Solids 63(10): 1797-1803.

Campbell, T.A., Haugan, T.J., Maartense, I., Murphy, J., Brunke, L. & Barnes, P.N. 2005. Flux pinning effects of Y2O3 nanoparticulate dispersions in multilayered YBCO thin films. Physica C 423: 1-8.

Hamid, N.A. & Abd-Shukor, R. 2000. Effects of TiO2 addition on the superconducting properties of Bi-Sr-Ca-Cu-O system. J. of Mat. Sci. 35: 2325-2329.

Han, S., Bryntse, I., Axnas, J., Zhao, B.R. & Rapp, O. 2004. Fluctuation conductivity at high temperature in polycrystalline Hg, Tl-1223 is there 1D fluctuation behavior. Physica C 408: 679-680.

Han, S.H. & Rapp, O. 1995. Superconducting fluctuations in the resistivity of Bi-based 2:2:2:3. Solid State Communications 94: 661-666.

He, Z.H., Habisreuther, T., Bruchlos, G., Litzkendorf, D. & Gawalek, W. 2001. Investigation of microstructure of textured YBCO with addition of nanopowder SnO2. Physica C 325: 277-284.

Hikami, S. & Larkin, A.I. 1988. Magnetoresistance of high temperature superconductors. Mod. Phys. Lett. B 2: 693-698.

Hohenberg, P.C. & Halperin, B.I. 1977. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49: 435-479.

Islam, M.R. & Pramanik, M.H.A. 1997. Reduced paraconductivity: Evidence for a mean-field transition at TcMF and a dimensional crossover temperature above TcMF. Physical Review B 55: 6621-6624.

Khurram, A.A., Khan, N.A. & Mumtaz, M. 2009. Intercomparison of fluctuation induced conductivity of Cu0.5Tl0.5Ba2Can- 1CunO2n+4-1 (n = 2, 3, 4) superconductor thin films. Physica C 469: 279-282.

Lawrence, W.E. & Doniach, S. 1971. Theory of layer structure superconductors, Dlm. Kanda, E. (pnyt). Proceedings of the Twelfth International Conference on Low Temperature Physics. Keigaku, Tokyo. hlm. 361-362.

Lobb, C.J. 1987. Critical fluctuations in high-Tc superconductors. Phys. Rev. B 36: 3930-3932.

Mohammed, N.H. 2013. The excess conductivity of (Cu0.5Tl0.5)-1223 superconductor substituted by Ti. Physica C 485: 95-101.

Mumtaz, M., Khan, N.A. & Ashraf, F. 2011. Enhanced superconductivity in (Cu0.5Tl0.25M0.25) Ba2Ca2Cu3O10−δ samples. J. Supercond. Nov. Magn. 24: 1547-1551.

Ramin Yousefi, Farid Jamali Sheini, Abdolhossein Sa΄Aedi & Mohsen Cheraghizade. 2015. Growth and characterization of PbO nanorods grown using facile oxidation of lead sheet. Sains Malaysiana 44: 291-294.

Reggiani, L., Vaglio, R. & Varlamo, A.A. 1991. Fluctuation conductivity of layered high-Tc superconductors: A theoretical analysis of recent experiments. Phys. Rev. B 44: 9541-9546.

Sahoo, M. & Behera, D. 2014. Effect of Ti doping on structural and superconducting property of YBa2Cu3O7-y High Tc superconductor. Journal of Superconductivity and Novel Magnetism 27: 83-93.

Sahoo, M., Giri, D. & Behera, D. 2014. Study of structural modification and fluctuation induced electrical conductivity in YBa2Cu3O7-y + xBaSnO3 superconductor composite. Journal of Low Temperature Physics 177: 257-273.

Sarmiento, R.M.P., Oribe Laverde, M.A., Vera Lopez, E., Landinez, D.A. & Roa-Rojas, J. 2007. Conductivity, fluctuation and superconducting parameters of the YBa2Cu3-x(PO4)xO7-δ material. Physica B 398: 360-363.

Sato, T., Nakane, H., Mori, N. & Yoshizawa, S. 2001. Fluctuation conductivity analysis for Bi-2223 superconductors with different sintering time. Physica C 357-360: 244-247.

Sharma, S.V., Sinha, G., Nath, T.K., Chakroborty, S. & Majumdar, A.K. 1995. Superconducting fluctuation study of the 110 K phase in polycrystalline Bi1.6Pb0.4Sr2Ca2Cu3Oy high-Tc superconductor. Physica C 242: 351-359.

Thompson, R.S. 1970. Microwave, flux flow, and fluctuation resistance of dirty type-II superconductors. Phys. Rev. B 1: 327-333.

Vidal, F.J.A., Veira, J., Maza, F., Garcia-Alvarado, M., Moran & Alario, M.A. 1988. Excess electrical conductivity above Tc in high- temperature superconductors, and thermal fluctuations. Journal of Physics C 21: L599-L606.

Yusuf, A.A., Yahya, A.K., Khan, N.A., Md. Salleh, F., Marsom, E. & Huda, N. 2011. Effect of Ge4+ and Mg2+ doping on superconductivity, fluctuation induced conductivity and interplanar coupling of TlSr2CaCu2O7−δ superconductors. Physica C 471 (11-12): 363-372.

Zhao, Y., Cheng, C.H. & Wang, J.S. 2005. Flux pinning by NiO-induced nano-pinning centers in melt-textured YBCO superconductor. Supercond. Sci. & Technol. 18: S43-S46.

 

 

*Corresponding author; email: ras@ukm.edu.my

 

previous