Sains Malaysiana 45(1)(2016): 129–134

Influences of 1,2-dichlorobenzene on Bacterial Community Structure in Wetland Soil

(Pengaruh 1,2- diklorobenzena pada Struktur Komuniti Bakteria di Tanih Tanah Bencah)

 

HUIXING LIANG1, AIHUI CHEN1, ZHAOXIA L1I, MUHAMMAD AQEEL ASHRAF2,3

& CHENG DING1*

 

1Key Laboratory for Ecology and Pollution Control of Coastal Wetlands, Yancheng Institute

 of Technology, Yancheng, China

 

2Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

3Water Research Unit, Faculty of Science and Natural Resources, University Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia

 

 

Received: 27 June 2014/Accepted: 6 November 2014

 

ABSTRACT

In order to explore the response of the soil microbial community to 1,2-dichlorobenzene exposure in Wetland soil, a short-term (7 weeks) mesocosm study was conducted at four 1,2-dichlorobenzene concentrations of (100, 400 and 800) μg g -1. Dry soil, sterile and unsterile controls were also compared. The results obtained showed a significant effect of 1,2-dichlorobenzene on the development of bacterial populations in soils contaminated with different concentrations of 1,2-dichlorobenzene at the early time after application. In general, however, the number of populations of the same soil sample treated with the same concentration of 1,2-dichlorobenzene differed significantly with the increasing incubation time within the early 5 weeks. The scale of differences in banding patterns-showed that the microbial community structures of 1,2-dichlorobenzene-treated and non-1,2-dichlorobenzene-treated soils were not significantly different after 7 weeks of incubation. DNA in application-responsive bands from the 1,2-dichlorobenzene treatments was recovered and amplified using the universal primers. PCR products were recovered and cloned into pGEM-T Easy (Promega) and two clones were obtained. The two clones were sequenced using the automated Model 3730 DNA sequencing system. The two cloned sequences had very high similarities to an uncultured bacterium reported previously in the database of NCBI.

 

Keywords: Bacterial community; denaturing gradient gel electrophoresis(DGGE); wetland soil; 1,2-dichlorobenzene

 

ABSTRAK

Dalam usaha untuk mengkaji sambutan komuniti mikrob tanah pendedahan 1,2-diklorobenzena di tanih Tanah Bencah, satu kajian mesokosma jangka pendek (7 minggu) telah dijalankan pada empat kepekatan 1,2-diklorobenzena daripada (100, 400 dan 800) μg g -1. Tanah kering, kawalan steril dan tidak disteril juga dibandingkan. Keputusan yang diperoleh menunjukkan kesan bererti 1,2-diklorobenzena kepada pembangunan populasi bakteria dalam tanah yang tercemar dengan kepekatan 1,2-diklorobenzena yang berbeza pada awal selepas penetapan. Secara umum, bagaimanapun, bilangan populasi sampel tanah yang sama dirawat dengan kepekatan yang sama daripada 1,2-diklorobenzena berbeza jelas dengan peningkatan masa pengeraman 5 minggu pertama. Skala perbezaan pola banding menunjukkan bahawa struktur komuniti mikrob tanah 1,2-diklorobenzena dirawat dan 1,2-diklorobenzena tidak dirawat tidak berbeza secara ketara selepas 7 minggu pengeraman. DNA dalam band aplikasi responsif daripada rawatan 1,2-diklorobenzena telah pulih dan dikuatkan menggunakan primers sejagat. Produk PCR telah pulih dan diklon ke pGEM-T Mudah (Promega) dan dua klon diperoleh. Kedua-dua klon telah disusun menggunakan sistem penjujukan DNA Model automatik 3730. Kedua-dua jujukan klon mempunyai persamaan yang sangat tinggi kepada bakteria tidak berkultur yang dilaporkan sebelum ini dalam pangkalan data NCBI.

 

Kata kunci: Komuniti bakteria; penyahaslian kecerunan gel elektroforesis (DGGE); tanah bencah; 1,2-diklorobenzena

REFERENCES

 

Ashraf, M.A., Ullah, S., Ahmad, I., Qureshi, A.K., Balkhair, K.S. & Rehman, M.A. 2013. Green biocides, a promising technology: Current and future applications. Journal of the Science of Food and Agriculture 94(3): 388-403.

Balser, T.C., Kinzig, A.P. & Firestone, M.K. 2002. Linking soil microbial communities and ecosystem functioning. In The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions, edited by Kinzig, A.P., Pacala, S.W. & Tilman, D. Princeton and Oxford: Princeton University Press. pp. 265-293

Batool, S., Khalid, A., Chowdury, A.J.K., Sarfraz, M., Balkhair, K.S. & Ashraf, M.A. 2015. Impacts of azo dye on ammonium oxidation process and ammonia oxidizing soil bacteria. RSC Advances 5: 34812-34820.

Bunge, M., Adrian, L. & Kraus, A. 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421: 357-360.

Chen, A.H., Li, H.S., Liang, H.X., Li, Z.X. & Ding, C. 2010. The impact of Spartina alterniflora on the soil microbial assemblages in Jiangsu coast. In Bioinformatics and Biomedical Engineering (iCBBE). iCBBE 2010 4th international conference Chengdu. pp. 1-4.

Doran, J.W. & Zeiss, M.R. 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology 15: 3-11.

Hahn, M.W. 2006. The microbial diversity of inland waters. Current Opinion in Biotechnology 17: 256-261.

Ibrahim, A., Mukhlisin, M. & Jaafar, O. 2014. Rainfall infiltration through unsaturated layered soil column. Sains Malaysiana 43(10): 1477-1484.

Kennedy, A.C. & Stubbs, T.L. 2006. Soil microbial communities as indicators of soil health. Annals of Arid Zone 45: 287-308.

Kennedy, A.C. & Smith, K.L. 1995. Soil microbial diversity and the substainability of agricultural soils. Plant and Soil 170:75-86.

Kumagai, S. & Matsunaga, I. 1997. Relations between exposure too-dichlorobenzene and concentrations of urinary metabolites. Journal of Occupational Health 39: 124-129.

Lü, Z.M., Min, H. & Ye, Y.F. 2003. Influences of quinclorac on culturable microorganisms and soil respiration in flooded paddy soil. Biomedical and Environmental Sciences 16: 314-322.

Min, H., Ye, Y., Chen, Z, Wu, W., and Du, Y.(2001). Effects of butachlor on microbial populations and enzyme activities in paddy soil. Journal of Environmental Science and Health B. 36: 581-595.

Muyzer, G., De Waal, E.C. & Uiterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding f or 16S rRNA. Applied and Environmental Microbiology 59: 695-700.

Nishino, S.F., Spain, J.C., Belcher, L.A. & Litchfield, C.D. 1992. Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Applied and Environmental Microbiology 58: 1719-1726.

Pankhurst, C., Doube, B.M. & Gupta, V.V.S.R. 1997. Biological Indicators of Soil Health. Wallingford: CAB International.

Qureshi, T., Memon, N., Memon, S.Q. & Ashraf, M.A. 2015. Decontamination of ofloxacin: Optimization of removal process onto sawdust using response surface methodology. Desalination and Water Treatment 57(1): 221-229.

Scheunert, I., Topp, E., Schmitzer, K., Klein, W. & Korte, F. 1985. Formation and fate of bound residues of [14C]benzene and [14C]chlorobenzene in soils and plants. Ecotoxicology and Environmental Safety 9: 159-170.

Surhio, M.A., Talpur, F.N., Nizamani, S.M., Amin, F., Bong, C.W., Lee, C.W., Ashraf, M.A. & Shahid, M.R. 2014. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Advances 4: 55960-55966.

Tas, N., Heilig, H.G., VanEekert, M.H., Maguire, N. & Meharg, A.A. 2010. Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment. FEMS Microbiology Ecolgy 74(3): 682-692.

Thompson, I.P., Bailey, M.J., Ellis, R.J., Maguire, N. & Meharg, A.A. 2009. Response of soil microbial communities to single and multiple doses of an organic pollutant. Soil Biology Biochemistry 31: 95-105.

Thompson, I.P., Bailey, M.J., Boyd, E.M., Maguire, N., Meharg, A.A. & Ellis, R.J. 1999. Concentration effects of 1,2-dichlorobenzene on soil microbiology. Environmental Toxicology and Chemistry 19(9): 1891-1898.

Welp, G. & Brummer, G.W. 1997. Toxicity of increased amounts of chemicals and the dose-response curves for heterogenous microbial populations in soil. Ecotoxicology and Environmental Safety 37: 37-44.

Wolters, V. & Schaefer, M. 1994. Effects of acid deposition on soil organisms and decomposition processes. In Effects of Acid Rain on Forest Processes, edited by Benckiser, G. New York: Wiley. pp. 83-127.

Zhou, J., Bruns, M.A. & Tiedje, J.M. 1996. DNA recovery from soils of diverse composition. Applied Environmental Microbiology 62: 316-322.

Zulkifley, M.T.M., Ng, N.T., Abdullah, W.H., Raj, J.K., Ghani, A.A., Shuib, M.K. & Ashraf, M.A. 2014a. Geochemical characteristics of a tropical lowland peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Environmental Earth Sciences 73(4): 1443-1458.

Zulkifley, M.T.M., Fatt, N.T., Raj, J.K., Hashim, R. & Ashraf, M.A. 2014b. The effects of lateral variation in vegetation and basin dome shape on a tropical lowland stabilization in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Acta Geologica Sinica 88(3): 894-914.

 

 

*Corresponding author; email: maltaf557@gmail.com

 

 

 

 

 

previous