Sains Malaysiana 45(1)(2016): 141–156
New Progress in the Study of Intergranular
Suction and Shear Strength of Unsaturated Soil
(Kemajuan Baharu dalam Kajian Sedutan Bebutir
dan Kekuatan Ricih daripada
Tanah Tak Tepu)
LIANSHENG TANG1*,
HAITAO
SANG2,3,
LIQUN
JIANG1
& YINLEI SUN1
1School of Earth
Sciences and Geological Engineering, Sun Yat-Sen University, Guangzhou,
Guangdong 510275 China
2School of Engineering,
Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
3Guangdong Province
Key Laboratory of Geological Processes and Mineral Resources Guangzhou,
Guangdong 510275, China
Received: 11 July
2014/Accepted: 15 November 2014
ABSTRACT
The suction between soil particles
is the basis and core problem in the study of unsaturated soil.
However, is the suction between soil particles just the matrix suction
(which has been widely used since the discipline of unsaturated
soil mechanics was established). In fact, the concept of matrix
suction is from soil science and reflects the water-absorbing capacity
of the soil. Matrix suction characterizes the interaction between
soil particles and pore water rather than the interactions between
soil particles, which were not in conformity with the principle
of effective stress of soils. The suction of unsaturated soil, in
essence, is the intergranular suction composed of absorbed suction
and structural suction. In this paper, first, the basic concepts
of absorbed suction and structural suction were briefly introduced.
Then, with soil mechanics, powder science, crystal chemistry, granular
material mechanics and other related disciplines of knowledge for
reference, the quantitative calculation formulas were theoretically
deduced for the absorbed suction for equal-sized and unequal-sized
unsaturated soil particles with arbitrary packing and the variable
structural suction for equal-sized unsaturated soil particles with
arbitrary packing and unequal-sized unsaturated soil particles with
close tetrahedral packing. The factors that influence these equations
were discussed. Then, the shear strength theory of unsaturated soil
was established based on the theory of intergranular suction through
the analysis of the effective stress principle of unsaturated soil.
This study demonstrates that the shear strength of unsaturated soil
consists of three parts: The effective cohesive force, the additional
strength caused by external loads and the strength caused by intergranular
suction. The contribution of the three parts to the shear strength
of unsaturated soil depends on the following influence factors:
Soil type, confining pressure, water content and density. Therefore,
these factors must be comprehensively considered when determining
the strength of an unsaturated soil.
Keywords: Absorbed suction;
intergranular suction; shear strength; structural suction; unsaturated
soil
ABSTRAK
Sedutan antara zarah tanah
adalah asas dan teras masalah dalam kajian tanah tidak tepu. Walau
bagaimanapun, adakah sedutan di antara zarah tanah hanya sedutan
matrik (yang telah digunakan secara meluas sejak disiplin mekanik
tanah tak tepu ditubuhkan). Malah, konsep matriks sedutan adalah
daripada sains tanah dan mencerminkan keupayaan menyerap air daripada
tanah. Matriks sedutan menyifatkan interaksi antara zarah tanah
dan air liang daripada interaksi antara zarah tanah yang tidak selaras
dengan prinsip tegasan berkesan tanah. Sedutan tanah tak tepu, pada
dasarnya, adalah sedutan bebutir terdiri daripada sedutan diserap
dan sedutan struktur. Dalam kertas ini, pertama, konsep asas sedutan
diserap dan sedutan struktur telah diperkenalkan secara ringkas.
Kemudian, dengan mekanik tanah, sains serbuk, kimia kristal, mekanik
bahan berbutir dan disiplin lain yang berkaitan pengetahuan untuk
rujukan, formula pengiraan secara teori kuantitatif telah disimpulkan
untuk sedutan diserap untuk sama bersaiz dan tidak sama rata bersaiz
zarah tanah tepu dengan sewenang-wenangnya dan pembungkusan sedutan
struktur tanah tak tepu yang berubah-ubah dan yang sama bersaiz
zarah dengan pembungkusan sembarangan dan saiz zarah tanah tepu
tidak sama rata dengan pembungkusan tertrahedron tertutup. Faktor
yang mempengaruhi persamaan ini telah dibincangkan. Kemudian, teori
kekuatan ricih tanah tidak tepu ditubuhkan berdasarkan teori sedutan
bebutir melalui analisis prinsip tegasan berkesan tanah tidak tepu.
Kajian ini menunjukkan bahawa kekuatan ricih tanah tidak tepu mengandungi
tiga bahagian: Daya padu efektif, kekuatan tambahan disebabkan oleh
beban luaran dan kekuatan yang disebabkan oleh sedutan bebutir.
Sumbangan daripada tiga bahagian untuk kekuatan ricih tanah tidak
tepu bergantung kepada faktor pengaruh berikut: Jenis tanah, tekanan
mengurung, kandungan air dan ketumpatan. Oleh itu, faktor-faktor
ini perlu dipertimbangkan secara menyeluruh apabila menentukan kekuatan
tanah yang tidak tepu.
Kata kunci: Kekuatan ricih; sedutan bebutir; sedutan struktur; serap
sedutan; tanah tak tepu
REFERENCES
Ashraf, M.A., Ullah,
S., Ahmad, I., Qureshi, A.K., Balkhair, K.S. & Rehman, M.A.
2013. Green biocides, a promising technology: Current and future
applications. Journal of the Science of Food and Agriculture
94(3): 388-403.
Baker, R. &
Frydman, S. 2009. Unsaturated soil mechanics, critical review of
physical foundations. Engineering Geology 106: 26-39.
Batool, S., Khalid,
A., Chowdury, A.J.K., Sarfraz, M., Balkhair, K.S. & Ashraf,
M.A. 2015. Impacts of azo dye on ammonium oxidation process and
ammonia oxidizing soil bacteria. RSC Advances 5: 34812-34820.
Diamonds,
S. 1970. Pore size distributions in clays. Clays
and Clay Minerals 18: 723-724.
Gens, A. 2010.
Soil-environment interactions in geotechnical engineering. Geotechnique
60: 3-74.
He, W., Zhao, M.H.,
Chen, Y.G. & Wang, H.H. 2010. Theoretical study of microscopical
mechanisms and computational method of hysteresis in SWCCs. Rock
and Soil Mechanics 31: 1078-1083.
Ibrahim, A., Mukhlisin,
M. & Jaafar, O. 2014. Rainfall infiltration through unsaturated
layered soil column. Sains Malaysiana 43(10): 1477-1484.
Jia, Q.J., Zhao,
C.G. & Han, Z.D. 2005. Study on shear strength of the unsaturated
soils in pendular state and its application. Rock and Soil Mechanics
26: 580-585.
Kim, T.H. &
Hwang, C. 2003. Modeling of tensile strength on moist granular earth
material at low water content. Engineering Geology 69: 233-244.
Lian, G.P., Thornton,
C. & Adams, M.J. 1993. A theoretical study of the liquid bridge
forces between two rigid spherical bodies. Journal of Colloid
Interface Science 161: 138-147.
Lu, N. & Likos,
W.J. 2006. Suction stress characteristic curve for unsaturated soils.
Journal of Geotechnical and Geoenviromental Engineering 132:
131-142.
Luan, M.T., Li,
S.Q. & Yang, Q. 2006. Matric suction and tension suction of
unsaturated soils. Chinese Journal of Geotechnical Engineering
28: 863-868.
Meng, L.M. 2013.
Tention atmosphere general formulas of effective stress principle
of unsaturated soil. The World of Building Materials 34:
38-43.
Miao, T.D., Mu,
Q.S., Liu, Z.Y. & Ma, C.W. 2001. Effective stress and shear
strength of unsaturated soil with low water content. Chinese
Journal of Geotechnical Engineering 23: 393-396.
Mitchell, J.K.
& Soga, K. 2005. Fundamentals of Soil Behavior. 3rd ed.
New Jersey: John Wiley & Sons, Inc.
Mu, Q.S., Ma, C.W.
& Miao, T.D. 2004. Research on shear strength of unsaturated
sand with low-moisture content. Chinese Journal of Geotechnical
Engineering 26: 674-678.
Qureshi, T., Memon,
N., Memon, S.Q. & Ashraf, M.A. 2015. Decontamination of ofloxacin:
Optimization of removal process onto sawdust using response surface
methodology. Desalination and Water Treatment 57(1): 221-229.
Ran, L.Z., Song,
X.D. & Tang, C.S.D. 2011. Laboratorial investigation on tensile
strength of expansive soil during drying. Journal of Engineering
Geology 19: 620-625.
Shen, Z.J. 1996a.
Retrospect and prospect of unsaturated soil mechanics. Advances
in Science and Technology of Water Resources 161: 1-5.
Shen, Z.J. 1996b.
Generalized suction and unified deformation theory for unsaturated
soils. Chinese Journal of Geotechnical Engineering 18: 1-9.
Shen, C.N., Fang,
X.W., Wang, H.W., Sun, S.G. & Guo, J.F. 2009. Research on effects
of suction, water content and dry density on shear strength of remolded.
unsaturated soils. Rock and Soil Mechanics 30: 1347-1351.
Shimada, K., Fujii,
H.S., Nishiyama, T. & Morii, T. 2000. Change of shear strength
due to interfacial tensions and matric suction of pore water in
unsaturated sandy soil. Proceedings of Unsaturated Soils for
Asia, edited by Balkema, A.A. pp.147-152.
Surhio, M.A., Talpur,
F.N., Nizamani, S.M., Amin, F., Bong, C.W., Lee, C.W., Ashraf, M.A.
& Shahid, M.R. 2014. Complete degradation of dimethyl phthalate
by biochemical cooperation of the Bacillus thuringiensis strain
isolated from cotton field soil. RSC Advances 4: 55960-55966.
Tang, L.S. 2000a.
Structure suction and principle of general effective stress in unsaturated
soils. ACTA Scientiarum Naturalium Universitatis Sunyatseni 39:
95-100.
Tang, L.S. 2000b.
Mechanical effect of chemical action of water on soil and analysis
on its mechanism. ACTA Scientiarum Naturalium Universitatis Sunyatseni
39: 104-109.
Tang,
L.S. & Wang, S.J. 2006. Absorbed suction and principle of effective
stress in unsaturated soils. Chinese Journal of Geotechnical
Engineering 22: 83-88.
Tang, L.S., Sang, H.T., Song, J., Liu, F.T., Yan, B. & Zhang,
P.C. 2013. Research on soil particle joint function and brittle-elastoplastic
cement damage model of unsaturated granite residual soil. Rock
and Soil Mechanics 34: 1453-1457.
Tang, L.S., Yan,
B., Zhang, P.C. & Zhang, Q.H. 2006. Definition and exploration
for effective stress and related conception in unsaturated soil.
Chinese Journal of Geotechnical Engineering 28: 216-220.
Terzaghi, K. 1943.
Theoretical Soil Mechanics. New York: Wiley Inc.
Wang, M. 1987.
The interaction between water and clay particles in saturated clayey
soils. Hydrogeology and Engineering Geology 13: 1-5.
Willet, C.D., Adams,
M.J., Johnson, S.A. & Sevile, J.P.K. 2003. Effects of wetting
hysteresis on pendular liquid bridges between rigid spheres. Powder
Technology 130: 63-69.
Willett, C.D.,
Adams, M.J. & Johnson, S.A. 2000. Capillary bridges between
two spherical particles. Langmuir 16: 9396-9405.
Xing, Y.C., Wu,
P.A. & Luo, Y.S. 1996. Triaxial test on undisturbed unsaturated
loess. Journal of Hydraulic Engineering 1: 47-52.
Yin, Z.Y.,
Zhao, J.D. & Hicher, P.Y. 2014. A micromechanics-based model
for sand-silt mixtures. International
Journal of Solids and Structures 51: 1350-1363.
Yin, Z.Y.,
Chang, C.S. & Hicher, P.Y. 2010. Micromechanical modelling for
effect of inherent anisotropy on cyclic behavior of sand. International Journal of Solids and Structures 47: 1933-1951.
Yoshitaka,
K. & Oka, C. 2012. Growth of liquid bridge in AFM. Journal of Colloid and Interface Science 40: 4368-4375.
Zhang, Z., Liu,
F.Y. & Zhang, G.P. 2013. A physical hysteresis boundary water
retention model for uniform wet particulate material. Journal
of Hydraulic Engineering 44: 1165-1174.
Zhang, Z., Liu,
F.Y., Zhang, G.P. & Zheng, F. 2007. Microscopic hydraulic behavior
from the interactions between uneven-sized wet particles and liquid
bridge. Journal of Hydraulic Engineering 28: 1323-1327.
Zhang, B.J., Yang,
J.Q. & Ding, J.X. 2006. The effect of mineral component grain
composition on CBR value. Soil Engineering and Foundation 20:
85-87.
Zhao, M.H., Liu,
X.P. & Peng, W.X. 2007. Application of aqueous film theory to
study of unsaturated soil’s suction. Rock and Soil Mechanics
44: 810-817.
Zhao, C.G., Li,
J., Liu, Y., Cai, G.Q. & Asreazad, S. 2013. Discussion on some
fundamental problems in unsaturated soil mechanics. Rock and
Soil Mechanics 34: 1825-1831.
Zulkifley, M.T.M.,
Ng, N.T., Abdullah, W.H., Raj, J.K., Ghani, A.A., Shuib, M.K. &
Ashraf, M.A. 2014a. Geochemical characteristics of a tropical lowland
peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia.
Environmental Earth Sciences 73(4): 1443-1458.
Zulkifley, M.T.M.,
Fatt, N.T., Raj, J.K., Hashim, R. & Ashraf, M.A. 2014b. The
effects of lateral variation in vegetation and basin dome shape
on a tropical lowland stabilization in the Kota Samarahan-Asajaya
area, West Sarawak, Malaysia. Acta Geologica Sinica 88(3):
894-914.
*Corresponding
author; email: eestls@mail.sysu.edu.cn
|