Sains Malaysiana 45(1)(2016):
19–28
Artificial Neural Network Technique for
Modeling of Groundwater Level in Langat
Basin, Malaysia
(Teknik Rangkaian Neuron Buatan untuk Pemodelan
Paras Air Bawah Tanah di Lembangan Langat, Malaysia)
MAHMOUD KHAKI*,
ISMAIL
YUSOFF,
NUR
ISLAMI
& NUR HAYATI HUSSIN
Department of Geology,
University of Malaya, 50603 Kuala Lumpur, Malaysia
Received: 20 August
2014/Accepted: 8 November 2014
ABSTRACT
Forecasting of groundwater
level variations is a significantly needed in groundwater resource
management. Precise water level prediction assists in practical
and optimal usage of water resources. The main objective of using
an artificial neural network (ANN)
was to investigate the feasibility of feed-forward, Elman and Cascade
forward neural networks with different algorithms to estimate groundwater
levels in the Langat Basin from 2007 to 2013. In order to examine
the accuracy of monthly water level forecasts, effectiveness of
the steepness coefficient in the sigmoid function of a developed
ANN model was evaluated in this
research. The performance of the models was evaluated using the
mean squared error (MSE) and the correlation coefficient (R). The results indicated
that the ANN technique was well suited for forecasting
groundwater levels. All models developed had shown acceptable results.
Based on the observation, the feed-forward neural network model
optimized with the Levenberg-Marquardt algorithms showed the most
beneficial results with the minimum MSE value of (0.048) and maximum R value
of (0.839), obtained for simulation of groundwater levels. The present
research conclusively showed the capability of ANNs
to provide excellent estimation accuracy and valuable sensitivity
analyses.
Keywords: Artificial neural
network (ANN); groundwater level; simulation
ABSTRAK
Ramalan variasi paras air bawah
tanah adalah sangat diperlukan dalam pengurusan sumber air bawah
tanah. Ketepatan ramalan paras air dapat membantu penggunaan secara
praktikal dan optimum sumber air tanah. Objektif utama penggunaan
rangkaian neuron buatan (ANN)
adalah untuk mengkaji kebolehan suap ke hadapan, Elman dan Cascade
rangkaian neuron ke hadapan dengan algoritma yang berbeza dalam
menentukan paras air tanah di Lembangan Langat dari 2007 hingga
2013. Untuk memastikan ketepatan ramalan paras air tanah bulanan,
keberkesanan pekali kecuraman dalam fungsi sigmoid model ANN yang dibangunkan dinilai dalam kajian ini. Prestasi
model dinilai berdasarkan purata ralat kuasa dua (MSE)
dan pekali korelasi (R). Keputusan menunjukkan bahawa teknik ANN adalah
sangat sesuai digunakan dalam meramal paras air bawah tanah. Semua
model yang dibangunkan menunjukkan keputusan yang boleh diterima.
Berdasarkan pemerhatian, model rangkaian neuron ke hadapan yang
dioptimumkan dengan algoritma Levenberg-Marquardt menunjukkan keputusan
yang paling bermanfaat dengan nilai minimum MSE (0.048) dan nilai maksimum R (0.839) diperoleh daripada
simulasi paras air bawah tanah. Kajian ini secara muktamadnya menunjukkan
keupayaan ANN dalam memberikan penganggaran ketepatan
terbaik dan analisis sensitiviti bernilai.
Kata kunci: Paras air bawah tanah; rangkaian neuron buatan (ANN); simulasi
REFERENCES
Anctil, F., Perrin,
C. & Andréassian, V. 2004. Impact of the length of observed
records on the performance of ANN and of conceptual parsimonious
rainfall-runoff forecasting models. Environmental Modelling &
Software 19(4): 357-368.
ASCE Task C. 2000.
Artificial neural networks in hydrology. I: Preliminary concepts.
Journal of Hydrologic Engineering 5(2): 115-123.
Ashraf, M.A., Maah,
M.J., Yusoff, I. & Mohamadreza Gharibreza. 2011. Proposed design
of anaerobic wetland system for treatment of mining waste water
at former tin mining catchmet. Scientific Research and Essays
6(28): 6001-6022.
Coulibaly, P.,
Anctil, F., Aravena, R. & Bobée, B. 2001. Artificial neural
network modeling of water table depth fluctuations. Water Resources
Research 37(4): 885-896.
Coulibaly, P.,
Anctil, F. & Bobee, B. 2000. Daily reservoir inflow forecasting
using artificial neural networks with stopped training approach.
Journal of Hydrology 230(3): 244-257.
Elman, J.L. 1990.
Finding structure in time. Cognitive Science 14(2): 179-211.
Fausset, L. 1994.
Fundamentals of Neural Networks. New Jersey: Prentince Hall.
p. 461.
Filik, U.B. &
Kurban, M. 2007. A new approach for the short-term load forecasting
with autoregressive and artificial neural network models. International
Journal of Computational Intelligence Research 3(1): 66-71.
Govindaraju, R.S.
& Rao, A.R. 2000. Artificial Neural Networks in Hydrology.
Berlin, Heidelberg: Kluwer Academic Publishers. p. 332.
Hagan, M.T., Demuth,
H.B. & Beale, M. 1996. Neural Network Design. Boston:
PWS Publishing. p. 734.
Hagan, M.T. &
Menhaj, M.B. 1994. Training feedforward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks 5(6): 989-993.
Haykin, S. 1999.
Neural Networks: A Comprehensive Foundation. 2nd ed. New
Jersey: Prentice Hall. p. 823.
Hornik, K., Stinchcombe,
M. & White, H. 1989. Multilayer feedforward networks are universal
approximators. Neural Networks 2(5): 359-366.
Hussain, N.H.,
Yusoff, I., Alias, Y., Mohamad, S., Rahim, N.Y. & Ashraf, M.A.
2014. Ionic liquid as a medium to remove iron and other metal ions:
A case study of the North Kelantan Aquifer, Malaysia. Environmental
Earth Sciences 71(5): 2105-2113.
Karimi, S., Kisi,
O., Shiri, J. & Makarynskyy, O. 2013. Neuro-fuzzy and neural
network techniques for forecasting sea level in Darwin Harbor, Australia.
Computers & Geosciences 52: 50-59.
Karmokar, B.C.,
Mahmud, M.P., Siddiquee, M.K., Nafi, K.W. & Kar, T.S. 2012,
Touchless written English characters recognition using neural network.
International Journal of Computer & Organization Trends 2(3):
80-84.
Khaki, M., Yusoff,
I. & Islami, N. 2015. Application of the artificial neural network
and neuro fuzzy system for assessment of groundwater quality. CLEAN
- Soil Air Water 43: 551-560.
Kin, C.L., Ball,
J.E. & Sharma, A. 2001. An application of artificial neural
networks for rainfall forecasting. Mathematical and Computer
Modelling 33(6): 683-693.
Lashkarbolooki,
M. & Shafipour, Z.S. 2012. Trainable cascade-forward back-propagation
network modeling of spearmint oil extraction in a packed bed using
SC-CO2. The Journal of Supercritical Fluids 73:
108-115.
Maier, H.R. &
Dandy, G.C. 2000. Neural networks for the prediction and forecasting
of water resources variables: A review of modelling issues and applications.
Environmental Modelling & Software 15(1): 101-124.
Maier, H.R. &
Dandy, G.C. 1998. Understanding the behaviour and optimising the
performance of back-propagation neural networks: An empirical study.
Environmental Modelling & Software 13(2): 179-191.
Malaysian Meteorological
Department (MMD). 2013. http:// www.met.gov.my.
Mishra, A., Kar,
S. & Singh, V. 2007. Prioritizing structural management by quantifying
the effect of land use and land cover on watershed runoff and sediment
yield. Water Resources Management 21(11): 1899-1913.
Mohanty, S., Jha,
M.K., Kumar, A. & Sudheer, K. 2010. Artificial neural network
modeling for groundwater level forecasting in a River Island of
Eastern India. Water Resources Management 24(9): 1845-1865.
Mohanty, S., Scholz,
M. & Slater, M. 2002. Neural network simulation of the chemical
oxygen demand reduction in a biological activated-carbon filter.
Water and Environment Journal 16(1): 58-64.
Møller, M.F. 1993.
A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks 6(4): 525-533.
Riedmiller, M.
& Braun, H. 1993. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm, paper presented at neural networks.
IEEE International Conference. pp. 586-591.
Saghravani, S.R.,
Yusoff, I., Mustapha, S. & Saghravani, S.F. 2013. Estimating
groundwater reharge using empirical method: A case study in the
tropical zone. Sains Malaysiana 42(5): 553-560.
Selventhiran, U.,
Premaratne, H. & Sonnadara, D. 2012. An artificial neural network
model for river flow forecasting. Paper presented at Proceedings
of the Technical Sessions. 28: 15-21.
Singh, K.P., Basant,
A., Malik, A. & Jain, G. 2009. Artificial neural network modeling
of the river water quality - a case study. Ecological Modelling
220(6): 888-895.
Singh, R.M., Datta,
B. & Jain, A. 2004. Identification of unknown groundwater pollution
sources using artificial neural networks. Journal of Water Resources
Planning and Management. 130(6): 506-514.
Sheela, K.G. &
Deepa, S. 2013. Review on methods to fix number of hidden neurons
in neural networks. Mathematical Problems in Engineering.
Article ID 425740.
Talebizadeh, M.,
Morid, S., Ayyoubzadeh, S.A. & Ghasemzadeh, M. 2010. Uncertainty
analysis in sediment load modeling using ANN and SWAT model. Water
Resources Management 24(9): 1747-1761.
Te Chow, V., Maidment,
D.R. & Mays, L.W. 1988. Applied Hydrology. Singapore:
Tata McGraw-Hill Education. p. 572.
Verma, A. &
Singh, T. 2013. Prediction of water quality from simple field parameters.
Environmental Earth Sciences 69(3): 1-9.
Yusoff, I., Alias,
Y., Yusof, M. & Ashraf, M.A. 2013. Assessment of pollutants
migration at Ampar Tenang landfill site, Selangor, Malaysia. ScienceAsia
39: 392-409.
Zhang, Y., Pulliainen,
J., Koponen, S. & Hallikainen, M. 2002. Application of an empirical
neural network to surface water quality estimation in the Gulf of
Finland using combined optical data and microwave data. Remote
Sensing of Environment 81(2): 327-336.
Zulkifley, M.T.M.,
Ng, N.T., Raj, J.K., Hashim, R., Bakar, A.F.A., Paramanthan, S.
& Ashraf, M.A. 2013. A review of the stabilization of tropical
lowland peats. Bulletin of Engineering Geology and the Environment
73(3): 733-746.
*Corresponding author; email: mahmoud.khaki@gmail.com
|