Sains Malaysiana 45(1)(2016): 29–34
Influence of Hydrolysis on Electrospinnability
of Chitosan/Polyvinyl Alcohol Blends Solution and Fiber Diameter
Distribution
(Pengaruh Hidrolisis pada Keupayaan Elektropemusingan
Kitosan/Larutan Campuran Alkohol Polivinil dan Pengedaran Diameter
Serabut)
UMMA HABIBA,
AMALINA
M.
AFIFI*,
BEE
CHIN
ANG
& SEPEHR TALEBIAN
Materials Engineering Strategic Unit, Department of Mechanical
Engineering , Faculty of Engineering, University of Malaya, 50603
Kuala Lumpur, Federal Territory, Malaysia
Received:
19 July 2014/Accepted: 10 November 2014
ABSTRACT
In
this study, the effect of hydrolysis on electrospinnability of chitosan/PVA
blend solution has been investigated. Since crude
chitosan (Mw=8.96105 g/mole,
DD=40%)
could not be dissolved even in concentrated acetic acid, it was
hydrolyzed with 33.5 wt. % of NaOH at 90°C for 24 and 42 h. Hydrolyzed chitosan
with two different time duration was analyzed using Fourier transform
infrared (FTIR). Morphology of the product nanofiber was investigated
by field emission scanning electron microscope (FESEM.).
FTIR
results showed that the hydrolysis did not destroy
the molecular backbone of chitosan but increased the degree of deacetylation
from 40 to 84% and 92% for 24 and 42 h hydrolysis time, respectively.
FESEM image
analysis was carried out and histogram was drawn to study on the
distribution of fiber diameter. It showed that though the composition
of chitosan/PVA
remained the same, but mean fiber diameter, standard
deviation and required applied voltage for electrospinning was smaller
for the solution containing maximum time hydrolyzed chitosan. It
indicated that longer hydrolysis time resulted in finer nanofiber
which mostly attributed to lower required voltage for electrospinning.
Threshold composition for defect free fiber is 50:50 and 60:40 of
chitosan/PVA for 24 and 42 h hydrolysis, respectively. It meant that
42 h hydrolysis ensured the presence of more chitosan in the chitosan/PVA
polymer blend because of smaller presence of amino
group in chitosan molecule.
Keywords:
Biodegradable polymers; chitosan; degree of deacetylation; electrospinning
ABSTRAK
Dalam
kajian ini kesan hidrolisis ke atas larutan campuran keupayaan elektropemusingan
kitosan /PVA telah dikaji. Kitosan (Mw=8.96 × 105 g/mol, DD=40%)
tidak boleh larut walaupun dalam asid asetik pekat, ia telah dihidrolisiskan
dengan 33.5 bt. % NaOH pada 900°C selama 24 dan 42 jam.
Kitosan yang dihidrolisis dengan dua tempoh masa yang berbeza dianalisis
menggunakan Transformasi Fourier Inframerah (FTIR).
Morfologi nanoserabut produk itu dikaji mengikut bidang pelepasan
mikroskop imbasan elektron (FESEM.). Keputusan FTIR menunjukkan
proses hidrolisis tidak menjejaskan tulang belakang molekul kitosan
tetapi meningkatkan tahap deasitelasi daripada 40 kepada 84% dan
92% untuk 24 dan 42 jam masa hidrolisis. FESEM analisis imej telah dijalankan
dan graf histogram disertakan bagi mengkaji mengenai pengagihan
diameter serabut. Ia menunjukkan bahawa walaupun komposisi kitosan/PVA kekal
sama, tetapi min diameter serabut, sisihan piawai dan voltan yang
diperlukan untuk proses elektropemusingan adalah lebih kecil untuk
larutan kitosan yang mengandungi masa hidrolisis yang maksimum.
Ia menunjukkan bahawa lebih lama masa hidrolisis akan menghasilkan
nanoserabut yang lebih halus dengan hanya voltan yang lebih rendah
diperlukan untuk proses elektropemusingan. Komposisi yang optimum
untuk menghasilkan serat yang baik adalah 50:50 dan 60:40 kitosan/PVA
masing-masing untuk 24 dan 42 jam hidrolisis. Ini
bermakna bahawa 42 jam hidrolisis memastikan lebih banyak kitosan
dalam kitosan/PVA polimer
campuran kerana kehadiran kecil kumpulan amino dalam molekul kitosan.
Kata kunci: Biodegradasi polimer; kitosan elektropemusingan; tahap
deasitelasi
REFERENCES
Baiwen Qi, Aixi Yu, Shaobo Zhu, Biao Chen & Yan Li. 2010. The
preparation and cytocompatibility of injectable thermosensitive
chitosan/poly (vinyl alcohol) hydrogel. Journal of Huazhong University
of Science and Technology (Medical Sciences) 30: 89-93.
Bin Duan, Dong Cunhai, Xiaoyan Yuan & Kangde Yao. 2004. Electrospinning
of chitosan solutions in acetic acid with poly (ethylene oxide).
Journal of Biomaterials Science, Polymer Edition 15(6): 797-811.
Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart,
M., Greiner, A. & Wendorff, J.H. 2001. Nanostructured fibers
via electrospinning. Advanced Materials 13(1): 70-72.
Borchard, G. 2001. Chitosans for gene delivery. Advanced Drug
Delivery Reviews 52(2): 145-150.
Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles- Monal,
W., Desbrieres, J. & Rinaudo, M. 2001. An infrared investigation
in relation with chitin and chitosan characterization. Polymer
42(8): 3569-3580.
Fong, H., Chun, I. & Reneker, D.H. 1999. Beaded nanofibers formed
during electrospinning. Polymer 40(16): 4585-4592.
Fong, H. & Reneker, D.H. 1999. Elastomeric nanofibers of styrene-butadiene-styrene
triblock copolymer. Journal of Polymer Science Part B Polymer
Physics 37(24): 3488- 3493.
Francis Suh, J-K. & Matthew, H.W.T. 2000. Application of chitosan-based
polysaccharide biomaterials in cartilage tissue engineering: A review.
Biomaterials 21(24): 2589- 2598.
Homayoni, H., Ravandi, S.A.H. & Valizadeh, M. 2009. Electrospinning
of chitosan nanofibers: Processing optimization. Carbohydrate
Polymers 77(3): 656-661.
Huang, Z-M., Zhang, Y-Z., Kotaki, M. & Ramakrishna, S. 2003.
A review on polymer nanofibers by electrospinning and their applications
in nanocomposites. Composites Science and Technology 63(15):
2223-2253.
Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, Li. &
Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf core
prepared via pre-cooled dissolving method. Sains Malaysiana 43(8):
1221-1229.
Klossner, R.R., Queen, H.A., Coughlin, A.J. & Krause, W.E. 2008.
Correlation of chitosan’s rheological properties and its ability
to electrospin. Biomacromolecules 9(10): 2947-2953.
Li, L. & Hsieh, Y-L. 2006. Chitosan bicomponent nanofibers and
nanoporous fibers. Carbohydrate Research 341(3): 374-381.
Nurhidayatullaili Muhd Julkapli, Hazizan Md Akil & Zulkifli Ahmad.
2011. Preparation, properties and applications of chitosan-based
biocomposites/blend materials: A review. Composite Interfaces
18(6): 449-507.
Pawlak, A. & Mucha, M. 2003. Thermogravimetric and FTIR studies
of chitosan blends. Thermochimica Acta 396(1): 153-166.
Shauer, C.L. & Schiffman, J.D. 2008. Fibrous mats containing
chitosan nanofibers. Google Patents No. US 20100216211 A1.
Yarin, A.L. 1993. Free Liquid Jets and Films: Hydrodynamics and
Rheology. England: Longman Publishing Group.
Zong, X., Kim, K-S., Fang D-F., Ran, S., Hsiao, B.S. & Chu, B.
2002. Structure and process relationship of electrospun bioabsorbable
nanofiber membranes. Polymer 43(16): 4403-4412.
*Corresponding author; email: amalina@um.edu.my
|