Sains Malaysiana 45(1)(2016): 9–18
Origin of Formation Water Salinity Variation
and Its Geological Significance in Chang 9 Stratum, Jiyuan Oilfield
(Punca Pembentukan Variasi Kemasinan Air
dan Kepentingan Geologi Chang 9 Stratum di Lapangan Minyak Jiyuan)
CHENG FENG1*,
ZHIQIANG
MAO1,
HUA
YANG2,
JINHUA
FU2,
YUJIANG
SHI2,
YUMEI
CHENG3,
HAITAO
ZHANG2,
LINLIN
NIU4
& MUHAMMAD AQEEL ASHRAF5,6
1Key Laboratory
of Earth Prospection and Information Technology (Beijing)
College
of Geophysics and Information Engineering, China University of Petroleum
102249
Beijing, China
2National Engineering
Laboratory for Exploration and Development of Low-Permeability Oil
and Gas Field & PetroChina Changqing Oilfield Company, 710018
Xi’ an, China
3Exploration Department,
PetroChina Changqing Oilfield Company
710018 Xi’ an,
China
4Changqing Division,
PetroChina Logging Limited Company, 710201 Xi’ an
China
5Department of Geology,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur
Malaysia
6Water Research Unit, Faculty of Science and Natural Resources, University
Malaysia Sabah,
88400 Kota Kinabalu, Sabah, Malaysia
Received: 13 July
2014/Accepted: 6 November 2014
ABSTRACT
The origin of formation water
salinity variation in Chang 9 stratum, Jiyuan oilfield, Ordos basin
is studied here. 91 formation water samples show that water salinity
is characterized by a wide range and a complex plane distribution.
In order to find out the main cause of such distribution complexity
and reveal the relationship between formation water and evolution
of reservoir traps, core data, chemical analysis result of formation
water and log data are analyzed from perspectives of diagenesis
and tectonism. And then, their characteristics are presented as
the followings. In high salinity area, tuffaceous mudstone interlayer
is found growing. Besides, the condition of Na++K+ is
opposite to that of Ca2+, for its rate of concentration
increase slows down with total salinity accumulating. In low salinity
area, while, with fracture and faults developing, some formation
water of CaCl2 type turns into MgCl2,
NaHCO3 or Na2SO4 type.
The cause is thus proposed to be composed of two aspects. One covers
tuff alteration and later diagenesis for the high salinity. To be
specific, montmorillonite, developed from tuff alteration, absorbs
cation selectively and then ions migrate, during which more Na++K+ get
lost, while more Ca2+ reserved.
Afterwards, those reserved Ca2+ get
released with montmorillonite transforming to illite, which results
in a loss of Na++K+ and
accumulation of Ca2+. Lots of ions are released into
formation water during that process and later diagenetic process,
which leads to the high water salinity. The other aspect is the
development of faults and fractures, through which, the upper low
salinity formation water gets connected. And that is the main cause
of low salinity. At last, geological significance is discussed from
two angles. Firstly, tuff alteration and later diagenesis are pivotal
to reservoir reconstruction; and secondly, faults and fractures
play an important role in oil transportation and storage.
Keywords: Chang 9 stratum;
fault and fracture; for mation water salinity; geological significance;
Jiyuan oilfield; origin; tuff alteration
ABSTRAK
Asal usul variasi kemasinan
formasi air di Chang 9 Stratum, lapangan minyak Jiyuan di basin
Ordos dikaji. 91 sampel formasi air menunjukkan bahawa kemasinan
air dicirikan melalui julat yang besar dan satah yang kompleks.
Untuk mengetahui punca utama yang menyebabkan taburan kekompleksan
dan menunjukkan hubungan antara formasi air dan evolusi perangkap
empangan, data teras, keputusan analisis kimia daripada formasi
air dan data log dianalisis daripada perspektif diagnesis dan tektonisme.
Seterusnya, ciri berikut diberikan: Dalam kawasan kemasinan tinggi,
tuf antara lapisan batu lumpur dilihat berkembang. Di samping itu,
keadaan Na++K+
adalah bertentangan dengan Ca2+ kerana
tahap kenaikan kepekatan menurun dengan pengumpulan jumlah kemasinan.
Di kawasan kemasinan yang rendah dengan retak dan sesar berkembang,
sebahagian formasi air jenis CaCl2 bertukar
menjadi jenis MgCl2, NaHCO3 atau
Na2SO4. Punca
utama yang dicadangkan mengambil kira dua aspek. Pertama ialah perubahan
tuf dan diagnesis untuk kemasinan tinggi. Untuk lebih tepat lagi,
montmorilonit yang dibangunkan daripada perubahan tuf memilih menyerap
kation dan selepas itu migrasi ion yang menunjukkan kehilangan Na++K+ yang
banyak manakala lebih banyak Ca2+ disimpan.
Selepas itu, Ca2+ yang
disimpan dibebaskan dengan montmorilonit berubah menjadi batuan
ilit dan mengakibatkan kehilangan Na++K+ dan
Ca2+ terkumpul. Proses ini telah menyebabkan
banyak ion dibebaskan dalam formasi air dan kemudian sewaktu proses
diagenetik yang membawa kepada tahap kemasinan air yang tinggi.
Aspek yang kedua ialah perkembangan sesar dan retak yang menyebabkan
bahagian atas formasi air kemasinan rendah berhubung. Ini adalah
punca utama kemasinan yang rendah. Akhirnya, kepentingan geologi
dibincangkan daripada dua sudut. Pertama, perubahan tuf dan kemudian
diagenesis adalah penting untuk pembinaan semula takungan dan kedua
sesar dan retak yang memainkan peranan penting dalam pengangkutan
dan penyimpanan minyak.
Kata kunci: Chang 9 stratum; formasi kemasinan air; kepentingan geologi;
lapangan minyak Jiyuan; perubahan tuf; punca; sesar dan retak
REFERENCES
Ashraf, M.A., Ullah,
S., Ahmad, I., Qureshi, A.K., Balkhair, K.S. & Rehman, M.A.
2013. Green biocides, a promising technology: Current and future applications.
Journal of the Science of Food and Agriculture 94(3): 388-403.
Batool, S., Khalid,
A., Chowdury, A.J.K., Sarfraz, M., Balkhair, K.S. & Ashraf,
M.A. 2015. Impacts of azo dye on ammonium oxidation process and
ammonia oxidizing soil bacteria. RSC Advances 5: 34812-34820.
Billings, G.K.,
Hitchon, B. & Shaw, D.R. 1969. Geochemistry and origin of formation
waters in the Western Canada Sedimentary Basin, 2. alkali metals.
Chemical Geology 4(1): 211-223.
Boschetti, T.,
Manzi, V. & Toscani, L. 2013. Messinian Ca-Cl brines from Mediterranean
Basins: Tracing diagenetic effects by Ca/Mg versus Ca/Sr diagram.
Aquatic Geochemistry 19(3): 195-208.
Chen, J., Liu,
D., Peng, P., Yu, C., Zhang, B. & Xiao, Z. 2013. The sources
and formation processes of brines from the Lunnan Ordovician paleokarst
reservoir, Tarim Basin, northwest China. Geofluids 13(3):
381-394.
Cheng, L.B., Qu,
C.X., Gou, Y.J., He, Y.A., Wang, J. & Wang, F. 2012. Fault characteristics
of Chang 9 Reservoir and its impact on Reservoir in Jiyuan Oilfield.
Lithologic Reservoirs 24(5): 50-53.
Clayton, R.N.,
Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F. & Shimp,
N.F. 1966. The origin of saline formation waters: 1. isotopic composition.
Journal of Geophysical Research 71(16): 3869-3882.
Collins, A.G. 1975.
Geochemistry of Oilfield Waters. Translated by Lin, W.Z.
& Wang, B.C. Beijing: Petroleum Industry Press, (in Chinese).
Connolly, C.A.,
Walter, L.M., Baadsgaard, H. & Longstaffe, F.J. 1990. Origin
and evolution of formation waters, Alberta Basin, Western Canada
Sedimentary Basin. I. chemistry. Applied Geochemistry 5(4):
375-395.
Duan, Y., Yu, W.X.,
Liu, X.Y., Guo, Z.Q., Wu, B.X., Sun, T. & Wang, C.Y. 2009. Oil
migration and accumulation rules of Chang-9 oil-bearing formation
in the Ordos Basin. Acta Geologica Sinica 2009-06.
Gao, X.X. 1994.
Oil Field Water in Oil-gas-bearing Basin, China. Beijing:
Petroleum Industry Press.
Hitchon, B. &
Friedman, I. 1969. Geochemistry and origin of formation waters in
the Western Canada Sedimentary Basin-I. Stable isotopes of hydrogen
and oxygen. Geochimica et Cosmochimica Acta 33(11): 1321-1349.
Hitchon, B., Billings,
G.K. & Klovan, J.E. 1971. Geochemistry and origin of formation
waters in the Western Canada Sedimentary Basin-III. Factors controlling
chemical composition. Geochimica et Cosmochimica Acta 35(6):
567-598.
Ibrahim, A., Mukhlisin,
M. & Jaafar, O. 2014. Rainfall infiltration through unsaturated
layered soil column. Sains Malaysiana 43(10): 1477-1484.
Kharaka, Y.K.,
Law, L.M., Carothers, W.W. & Goerlitz, D.F. 1986. Role of organic
species dissolved in formation waters from sedimentary basins in
mineral diagenesis. In Roles of Organic Matter in Sediment Diagenesis,
edited by Gautier, D.L. SEPM Society for Sedimentary Geology. SEPM
Special Publication Vol 38. pp. 111-122.
Knauth, L.P. &
Beeunas, M.A. 1986. Isotope geochemistry of fluid inclusions in
Permian Halite with implications for the isotopic history of ocean
water and the origin of saline formation waters. Geochimica et
Cosmochimica Acta 50(3): 419-433.
Lai, T.M. &
Mortland, M.M. 1961. Diffusion of ions in bentonite and vermiculite.
Soil Science Society of America Journal 25(5): 353-357.
Li, J., Liang,
X. & Mao, X.M. 2012. Hydro-geochemistry implications of evolution
of pore water in low-penetrability aquifer and significance of paleoclimate.
Earth Science- Journal of China University of Geoscience 37(3):
612-620.
Li, M., Jin, A.M.,
Lou, Z.H., Shang, C.J. & Guan, C. 2010. Hydrochemical properties
of formation water and its relationship with oil and gas migration
and accumulation in Zhenwu area of Southern Gaoyou Sag. Journal
of China University of Petroleum 34(5): 50-56.
Li, X.Q., Hou,
D.J. & Zhang, A.Y. 2001. Advancement of the geochemical study
of oilfield water. Geological Science and Technology Information
20(2): 51-54.
Liu, X.Y., Deng,
X.Q., Zhao, Y.D., Zhang, X.F. & Han, T.Y. 2011. Hydrocarbon
migration law and model of Chang 9 reservoir in Jiyuan area, Ordos
Basin. Lithologic Reservoirs 23(5): 9-15.
Liu, Y.Q., Zeng,
J.H., Zhou, L. & Zhai, S.J. 2013. Geochemical characteristics
and origin of Shahejie formation water in Huimin Sag. Geoscience
27(5): 1110-1119.
Lüders, V., Plessen,
B., Romer, R.L., Weise, S.M., Banks, D.A., Hoth, P., Dulski, P.
& Schettler, G. 2010. Chemistry and isotopic composition of
Rotliegend and Upper Carboniferous formation waters from the North
German Basin. Chemical Geology 276(3): 198-208.
Ma, H.Y., Zhou,
L.F., Deng, X.Q., Li, J.H. & Yang, L.P. 2013. The chemical characteristics
and geological significance of formation water of Chang 8 subsection
in Jiyuan area of Ordos Basin. Journal of Northwest University
(Natural Science Edition) 43(2): 253-257.
Meng, F.X., Xiang,
F., Li, F.J., Wu, C.X. & Yang, D. 2012. Diagenesis and pore
evolution of Chang 9 Reservoir in Jiyuan oilfield. Journal of
Xi’an Shiyou University (Natural Science Edition) 27(4): 7-12.
National Development
and Reform Commission, 2006. SYT 5523-2006 Practice for analysis
of oilfield waters. China Standard Press.
Pinti, D.L., Béland-Otis,
C., Tremblay, A., Castro, M.C., Hall, C.M., Marcil, J., Lavoie,
J. & Lapointe, R. 2011. Fossil brines preserved in the St-Lawrence
Lowlands, Québec, Canada as revealed by their chemistry and noble
gas isotopes. Geochimica et Cosmochimica Acta 75(15): 4228-4243.
Qiu, X.W. 2008.
Characteristics and forming environments of tuffs in Yanchang formation
in Ordos Basin. Northwest University Master’s Dissertation (Unpublished).
Qureshi, T., Memon,
N., Memon, S.Q. & Ashraf, M.A. 2015. Decontamination of ofloxacin:
optimization of removal process onto sawdust using response surface
methodology. Desalination and Water Treatment. DOI: 10.1080/19443994.2015.1006825.
Schlumberger, 1988.
Common Rock Minerals Manual in Log Interpretation. Translated
by Wu, Q.Y. & Zhang, A.J. Beijing: Petroleum Industry Press.
(in Chinese).
Shen, Z.L., Wang,
Y.X. & Guo, H.M. 2012. Opportunities and challenges of water-rock
interaction studies. Earth Science- Journal of China University
of Geosciences 37(2): 207-219.
Shi, Y.J.,
Xiao, L., Mao, Z.Q. & Guo, H.P. 2011. An identification method
for diagenetic facies with well logs and its geological significance
in low-permeability sandstones: A case study on Chang 8 reservoirs
in the Jiyuan Region, Ordos Basin. Acta Petrolei Sinica 32(5):
821.
Sun, X.Y. 2001. Geochemical characteristics of formation water
in sedimentary basin and its geological significance. Natural
Gas Exploration and Development 24(4): 47-53.
Surhio, M.A., Talpur,
F.N., Nizamani, S.M., Amin, F., Bong, C.W., Lee, C.W., Ashraf, M.A.
& Shahid, M.R. 2014. Complete degradation of dimethyl phthalate
by biochemical cooperation of the Bacillus thuringiensis strain
isolated from cotton field soil. RSC Advances 4: 55960-55966.
Wang, Y.P., Lin,
J.X. & Wang, C.X. 1998. Chemical evolution of groundwater in
the tertiary sedimentary system of the Xuhu oil_gas bearing depression.
Earth Science-Journal of China University of Geosciences 23(3):
294-298.
White, D.E. 1965.
Saline waters of sedimentary rocks. Am. Assoc. Petr. Geol. Mem.
4: 342-366.
Xie, X.N., Jiang,
T. & Wang, H. 2006. Expulsion
of overpressured fluid revealed by geochemistry of formation water
in the dirpiric structures of Yinggehai basin. Acta Petrologica
Sinica 22(8): 2243-2248.
Yang, X.P. &
Qiu, Y.N. 2002. Formation process and distribution of Laumontite
in Yanchang formation (upper triassic) of Ordos Basin. Acta Sedimentological
Sinica 20(4): 628-632.
Zhang, H.D., Wang,
S. & Guo, G.P. 2003. Tertiary deep water genesis in Huanghua
rift basin. Earth Science-Journal of China University of Geoscience
28(4): 455-470.
Zulkifley, M.T.M.,
Ng, N.T., Abdullah, W.H., Raj, J.K., Ghani, A.A., Shuib, M.K. &
Ashraf, M.A. 2014a. Geochemical characteristics of a tropical lowland
peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia,
Environmental Earth Sciences 73(4): 1443-1458.
Zulkifley, M.T.M.,
Fatt, N.T., Raj, J.K., Hashim, R. & Ashraf, M.A. 2014b. The
effects of lateral variation in vegetation and basin dome shape
on a tropical lowland stabilization in the Kota Samarahan-Asajaya
area, West Sarawak, Malaysia. Acta Geologica Sinica 88(3):
894-914.
*Corresponding
author; email: fcvip0808@126.com
|