Sains Malaysiana 45(2)(2016): 177–184
Profiling
of Anti-Oxidative Enzymes and Lipid Peroxidation in Leaves of Salt Tolerant and
Salt Sensitive Maize Hybrids under NaC1 and Cd Stress
(Pemprofilan Enzim Anti-Oksida dan Pengoksidaan Lipid dalam Daun
Jagung Hibrid Toleransi
Garam dan Sensitif Garam di bawah Tekanan NaCl dan Cd)
Ghulam Hasan Abbasi1,
Muhammad Ijaz*2, Javaid Akhtar3 & Muhammad Anwar-ul-Haq3, Moazzam Jamil1,
Shafaqat Ali4, Rafiq Ahmad5 & Hammad Nawaz Khan6
1Department
of Soil Science, University College of Agriculture and Environmental Sciences, The
Islamia University of Bahawalpur, Pakistan
2College
of Agriculture, Bahauddin Zakariya University, Bahadur Sub-campus Layyah, Pakistan
3Institute
of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
4Department
of Environmental Sciences, Government College University, Faisalabad, Pakistan
5Department
of Environmental Sciences, COMSATS Institute of Information Technology,
Abbottabad, Pakistan
6University
College of Agriculture and Environmental Sciences, The Islamia University of
Bahawalpur, Pakistan
Received:
4 October 2014/Accepted: 10 July 2015
ABSTRACT
Effects of NaCl salinity and cadmium on the
anti-oxidative activity of enzymes like superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX),
glutathione reductase (GR) and lipid peroxidation contents;
malondialdehyde (MDA) were studied in two maize hybrids
of different salt tolerance characteristics. An increase in the amount of lipid
peroxidation indicated the oxidative stress induced by NaCl and Cd. The results
also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the
activities of POD, SOD and APX but
showed no significant effect on CAT and GR in
both the studied hybrids. The combined effect of salinity and cadmium on these
parameters was higher than that of sole effect of either NaCl or Cd. It was
also found that maize hybrid 26204 had better tolerance against both stresses
with strong antioxidant system as compared to that of maize hybrid 8441. A
comparison of the antioxidants and lipid peroxidation in two maize hybrids
having varying level of NaCl and Cd stress tolerance corroborated the
importance of reactive oxygen species (ROS) in defense against abiotic
stresses.
Keywords: Antioxidant enzymes; cadmium; maize
hybrid (Zea mays L.); NaCl;
salinity
ABSTRAK
Kesan kemasinan NaCl dan kadmium terhadap aktiviti
anti-oksida enzim seperti superoksida dismutase (SOD),
katalase (CAT), peroksidase (POD), peroksidase askorbate (APX),
glutation reduktase (GR) dan kandungan lipid peroksidaan;
malondialdehid (MDA) telah dikaji dalam dua ciri berbeza
toleransi garam jagung hibrid. Peningkatan dalam jumlah pengoksidaan
lipid menunjukkan tekanan oksida aruhan NaCl dan Cd. Keputusan juga
menunjukkan bahawa tekanan NaCl menyebabkan peningkatan dalam aktiviti
POD,
SOD,
CAT,
APX
dan GR manakala tekanan kadmium meningkatkan
aktiviti POD, SOD dan
APX
tetapi tiada kesan ketara ditunjukkan ke atas CAT dan
GR
dalam kedua-dua hibrid yang dikaji. Kesan gabungan
kemasinan dan kadmium ke atas parameter ini adalah lebih tinggi
berbanding dengan kesan tunggal sama ada NaCl atau Cd. Juga didapati
bahawa jagung hibrid 26204 mempunyai toleransi yang lebih baik berbanding
dengan kedua-dua tekanan dengan sistem antioksidan yang kuat berbanding
dengan jagung hibrid 8441. Perbandingan antioksidan dan pengoksidaan
lipid dalam dua jagung hibrid yang mempunyai pelbagai tahap toleransi
tekanan NaCl dan Cd menyokong kepentingan spesies oksigen reaktif
(ROS) dalam pertahanan terhadap tekanan
abiotik.
Kata kunci: Enzim antioksida; jagung hibrid (Zea mays L.); kadmium; kemasinan; NaCl
REFERENCES
Aebi,
H. 1984. Catalase in vitro. Methods in Enzymology 105: 121-126.
Aroca,
R., Irigoyen, J.J. & Sanchez-Diaz, M. 2003. Drought enhances maize chilling
tolerance. II. Photosynthetic traits and protective mechanisms against
oxidative stress. Physiologia Plantarum 117: 540-549.
Asada,
K. 1994. Production and action of active oxygen in photosynthetic tissues. In Causes
of Photooxidative Stress and Amelioration of Defense System in Plants,
edited by Foyer, C.H. & Mullineaux, P.M. Boca Raton, Florida: CRC Press.
pp. 77-104.
Badawi,
G.H., Yamauchi, Y., Shimada, E., Sasaki, R., Kawano, N., Tanaka, K. &
Tanaka, K. 2004. Enhanced tolerance to salt stress and water deficit by
overexpressing superoxide dismutase in tobacco (Nicotiana tabacum)
chloroplasts. Plant Science 166: 919-928.
Beauchamp,
C. & Fridovich, I. 1971. Superoxide dismutase, improved assays and an assay
applicable to acrylamide gels. Analytical Biochemistry 44: 276-287.
Boscolo,
P.R.S., Menossi, M. & Jorge, R.A. 2003. Aluminum-induced oxidative stress
in maize. Phytochemistry 62: 181-189.
Bowler,
C., Van Montagu, M. & Inz, E.D. 1992. Superoxide dismutase and stress
tolerance. Annual Review of Plant Physiology & Plant Molecular Biology 43:
83-116.
Bray,
E.A., Bailey-Serres, J. & Weretilnyk, E. 2000. Responses to abiotic
stresses. In Biochemistry and Molecular Biology of Plants, edited by
Buchanan, B.B., Gruissem, W. & Jones, R.L. New Jersey: John Wiley and Sons,
Inc. pp. 1158-1203.
Dixit,
V., Pandey, V. & Syam, R. 2001. Different anti-oxidative responses to
cadmium in roots and leaves of pea Pisum sativum L., cv. Azad. Journal
of Experimental Botany 52: 1101-1109.
Foyer,
C.H. & Noctor, G. 2005. Oxidant and antioxidant signalling in plants, a
reevaluation of the concept of oxidative stress in a physiological context. Plant
Cell & Environment 28: 1056-1071.
Foyer,
C.H. & Noctor, G. 2003. Redox sensing and signaling associated with
reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia
Plantarum 119: 355-364.
Foyer,
C.H. & Noctor, G. 2000. Oxygen processing in photosynthesis, regulation and
signaling. New Phytologist 146: 359-388.
Garcia-Limones,
C., Hervas, A., Navas-Cortes, J.A., Jimenez- Diaz, R.M. & Tena, M. 2002.
Induction of an antioxidant enzyme system and other oxidative stress markers
associated with compatible and incompatible interactions between chickpea (Cicer
arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiological
& Molecular Plant Pathology 61: 325-337.
Hegedus,
A., Erdei, S. & Horvath, G. 2001. Comparative studies of H2O2 detoxifying
enzymes in green and greening barley seedlings under cadmium stress. Plant
Science 160: 1085- 1093.
Hernandez,
J.A. & Alamansa, M.S. 2002. Short-term effects of salt stress on
antioxidant systems and leaf water relations of pea leaves. Physiologia
Plantarum 115: 251-257.
Hernandez,
J.A., Jimenez, A., Mullineaux, P. & Sevilla, F. 2000. Tolerance of pea Pisum
sativum L. to long-term salt stress is associated with induction of
antioxidant defences. Plant, Cell & Environment 23: 853-862.
Hodges,
D.M., DeLong, J.M., Forney, C.F. & Prange, R.K. 1999. Improving the
thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation
in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611.
Hossain,
Z., Mandal, A.K.A., Datta, S.K. & Biswas, A.K. 2007. Development of NaCl
tolerant line in Chrysanthemum morifolium Ramat. through shoot
organogenesis of selected callus line. Journal of Biotechnology 129:
658-667.
Iannelli,
M.A., Breusegem, F.V., Montagu, M.V., Inze, D. & Massacci, A. 1999.
Tolerance to low temperature and paraquat-mediated oxidative stress in two
maize genotypes. Journal of Experimental Botany 50: 523-532.
Krantev,
A., Yordanova, R., Janda, T., Szalai, G. & Popova, L. 2008. Treatment with
salicylic acid decreases the effect of cadmium on photosynthesis in maize
plants, Journal of Plant Physiology 165: 920-931.
Liang,
Y., Chen, Q., Liu, Q., Zhang, W. & Ding, R. 2003. Exogenous silicon Si.
increases antioxidant enzyme activity and reduces lipid peroxidation in roots
of salt-stressed barley (Hordeum vulgare L.). Journal of Plant
Physiology 160: 1157-1164.
Lin,
C.C. & Kao, C.H. 2000. Effect of NaCl stress on H2O2 metabolism in rice
leaves. Plant Growth Regulation 30: 151-155.
Meloni,
D.A., Oliva, M.A., Martinez, C.A. & Cambraia, J. 2003. Photosynthesis and
activity of superoxide dismutase, peroxidase and glutathione reductase in
cotton under salt stress. Environmental & Experimental Botany 49:
69-76.
Misra,
N. & Dwivedi, U.N. 2004. Genotypic difference in salinity tolerance of
green gram cultivars. Plant Science 166: 1135-1142.
Mittler,
R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in
Plant Science 7: 405-410.
Mohammadkhani,
N. & Heidari, R. 2007. Effects of drought stress on protective enzyme
activities and lipid peroxidation in two maize cultivars. Pakistan Journal
of Biological Sciences 10: 3835-3840.
Muhling,
K.H. & Lauchli, A. 2003. Interaction of NaCl and Cd stress on
compartmentation pattern of cations, antioxidant enzymes and proteins in leaves
of two wheat genotypes differing in salt tolerance. Plant & Soil 253:
219-231.
Munns,
R. 2002. Comparative physiology of salt and water stress. Plant, Cell &
Environment 25: 239-250.
Nakano,
Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate- specific
peroxidase in spinach chloroplasts. Plant & Cell Physiology 22:
867-880.
Nawaz,
K. & Ashraf, M. 2007. Improvement in salt tolerance of maize by exogenous
application of glycinbetain, growth and water relations. Pakistan Journal of
Botany 39: 1647-1653.
Noctor,
G. & Foyer, C.H. 1998. Ascorbate and glutathione, keeping active oxygen
under control. Annual Review of Plant Physiology & Plant Molecular
Biology 49: 249-279.
Parida,
A.K. & Das, A.B. 2005. Salt tolerance and salinity effects on plants: A
review. Ecotoxicological & Environmetal Safety 60: 324-349.
Putter,
J. 1974. Peroxidases. In Methods of Enzymatic Analysis, II, edited by
Bergmeyer, H.U. New York: Acad. Press. pp. 685-690.
Qadir,
S., Qureshi, M.I., Javed, S. & Abdin, M.Z. 2004. Genotypic variation in
phytoremediation potential of Brassica juncea cultivars exposed to Cd
stress. Plant Science 167: 1171-1181.
Reddy,
A.R., Chaitanya, K.V., Jutur, P.P. & Sumithra, K. 2004. Differential
anti-oxidative responses to water stress among five mulberry Morus alba L.
cultivars. Environmental & Experimental Botany 52: 33-42.
Sandalio,
L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C. & Rio, L.A. 2001.
Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal
of Experimental Botany 52: 2115-2126.
Schutzendubel,
A., Schwanz, P., Teichmann, T., Gross, K., Langenfeld-Heyser, R. & Godbold,
D.L. 2001. Cadmium induced changes in anti-oxidative systems, hydrogen peroxide
content, and differentiation in Scots pine roots. Plant Physiology 127:
887-898.
Shah,
K.H., Ritambhara, G.K., Verma, S. & Dubey, R.S. 2001. Effect of cadmium on
lipid peroxidation, superoxide anion generation and activities of antioxidant
enzymes in growing rice seedlings. Plant Science 161: 1135-1144.
Shalata,
A., Mittova, V., Volokita, M., Guy, M. & Tal, M. 2001. Response of the
cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress, the root anti-oxidative system. Physiologia
Plantarum 112: 487-494.
Shalata,
A. & Tal, M. 1998. The effect of salt stress on lipid peroxidation and
antioxidants in the leaf of the cultivated tomato and its wild salt tolerant
relative Lycopersicon pennellii. Physiologia Plantarum 104:
169-174.
Smeets,
K., Cuypers, A., Lambrechts, A., Semane, B., Hoet, P., Van Laere, A. &
Vangronsveld, J. 2005. Induction of oxidative stress and anti-oxidative
mechanisms in Phaseolus vulgaris after Cd application. Plant
Physiology & Biochemistry 43: 437-444.
Sudhakar,
C., Lakshmi, A. & Giridarakumar, S. 2001. Changes in the antioxidant enzyme
efficacy in two high yielding genotypes of mulberry Morus alba L. under
NaCl salinity. Plant Science 161: 613-619.
Turkan,
I. & Demiral, T. 2009. Recent developments in understanding salinity tolerance. Environmental & Experimental Botany 67: 2-9.
Vitoria,
A.P., Lea, P.J. & Azevedo, R.A. 2001. Antioxidant enzymes responses to
cadmium in radish tissues. Phytochemistry 57: 701-710.
Wang,
M.E. & Zhou, Q.X. 2006. Effects of herbicide chlorimuron-ethyl on
physiological mechanisms in wheat Triticum aestivum. Ecotoxicological
& Environmetal Safety 64: 190-197.
Wu,
F., Zhang, G. & Dominy, P. 2003. Four barley genotypes respond differently
to cadmium, lipid peroxidation and activities of antioxidant capacity. Environmental
& Experimental Botany 50: 67-78.
Xiong,
L. & Zhu, J.K. 2002. Molecular and genetic aspects of plant responses to
osmotic stress. Plant, Cell & Environment 25: 131-139.
Yan,
B., Dai, Q., Liu, X., Huang, S. & Wang, Z. 1996. Flooding-induced membrane
damage, lipid oxidation and activated oxygen generation in corn leaves. Plant
& Soil 179: 261-268.
*Corresponding
author; email: ijazhi@yahoo.com
|