Sains Malaysiana 45(2)(2016): 289-296
Free
Convection Boundary Layer Flow on a Horizontal Circular Cylinder in a Nanofluid
with Viscous Dissipation
(Olakan
Bebas Aliran Lapisan Sempadan pada Silinder Bulat Mengufuk dalam
Nanobendalir dengan Pelesapan Likat)
Muhammad
Khairul Anuar Mohamed1, Nor Aida
Zuraimi Md Noar1, Mohd Zuki Salleh*1 & Anuar Ishak2
1Applied
& Industrial Mathematics Research Group, Faculty of Industrial Sciences and Technology
Universiti Malaysia Pahang, 26300 Kuantan, Pahang
Darul Makmur, Malaysia
2School
of Mathematical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Received:
10 April 2015/Accepted: 2 July 2015
ABSTRACT
In
this paper, the problem of free
convection boundary layer flow on a horizontal circular cylinder
in a nanofluid with viscous dissipation and constant wall temperature
is
investigated. The transformed boundary layer equations are solved
numerically using finite difference scheme namely the Keller-box
method. Numerical solutions were obtained for the reduced skin
friction coefficient, Nusselt number and Sherwood number as well
as the velocity and temperature profiles.The features
of the flow and heat transfer characteristics for various values
of the Brownian motion parameter, thermophoresis parameter, Lewis
number and Eckert number were analyzed and discussed.
Keywords:
Free convection; horizontal circular cylinder; nanofluid; viscous dissipation
ABSTRAK
Dalam
kajian ini, masalah olakan bebas aliran lapisan sempadan pada silinder
bulat mengufuk dalam nanobendalir dengan pelesapan likat dan suhu
permukaan malar dikaji. Persamaan
lapisan sempadan terjelma diselesaikan secara berangka dengan menggunakan
skim beza terhingga dikenali sebagai kaedah kotak Keller. Penyelesaian
berangka diperoleh bagi pekali geseran kulit diturunkan, nombor
Nusselt dan nombor Sherwood diturunkan serta profil halaju dan suhu.
Ciri aliran dan pemindahan haba bagi pelbagai nilai parameter
gerakan Brown, parameter termoforesis, nombor Lewis dan nombor Eckert dianalisis dan dibincangkan.
Kata
kunci: Nanobendalir; olakan bebas; pelesapan likat; silinder bulat mengufuk
REFERENCES
Anwar, I., Qasim, A.R., Ismail, Z., Salleh, M.Z. &
Shafie, S. 2013. Chemical reaction and uniform heat generation/absorption
effects on MHD stagnation-point flow of a nanofluid over a porous
sheet. World Applied Sciences Journal 24(10):
1390.
Arifin, N.M., Nazar,
R. & Pop, I. 2011. Viscous flow due to a permeable stretching/shrinking
sheet in a nanofluid. Sains Malaysiana 40(12):
1359-1367.
Azim, N.H.M.A. 2014.
Effects of viscous dissipation and heat generation on MHD conjugate
free convection flow from an isothermal horizontal circular cylinder.
SOP Transactions on Applied Physics 1(3):
1-11.
Bachok, N., Ishak, A.
& Pop, I. 2010. Boundary-layer flow of nanofluids over a moving surface in
a flowing fluid. International Journal of
Thermal Sciences 49(9): 1663-1668.
Blasius, H. 1908.
Grenzschichten in Flssigkeiten mit kleiner Reibung. Zeitschrift f¨urangewandte Mathematik und Physik 56: 1-37.
Chen, C.H. 2004.
Combined heat and mass transfer in MHD free convection from a vertical surface
with Ohmic heating and viscous dissipation. International
Journal of Engineering Science 42(7): 699-713.
Fr¨ossling, N. 1958.
Calculating by series expansion of the heat transfer in laminar, constant
property boundary layers at non isothermal surfaces. Archiv f¨or Fysik 14: 143-151.
Gebhart, B. 1962.
Effects of viscous dissipation in natural convection. Journal of Fluid Mechanics 14(02): 225-232.
Ishak, A., Nazar, R.,
Amin, N., Filip, D. & Pop, I. 2007. Mixed convection of the
stagnation-point flow towards a stretching vertical permeable sheet. Malaysian Journal of Mathematical Sciences 2:
217-226.
Ishak, A., Nazar, R.
& Pop, I. 2006. Mixed convection boundary layers in the stagnation-point
flow toward a stretching vertical sheet. Meccanica 41(5): 509-518.
Kakaç, S. &
Pramuanjaroenkij, A. 2009. Review of convective heat transfer enhancement with
nanofluids. International Journal of Heat
and Mass Transfer 52(13-14): 3187-3196.
Khan, W.A. & Pop,
I. 2010. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass
Transfer 53(11-12): 2477-2483.
Merkin, J.H. &
Pop, I. 1988. A note on the free convection boundary layer on a horizontal
circular cylinder with constant heat flux. Wärme
- und Stoffübertragung 22(1-2): 79-81.
Merkin, J.H. 1977.
Mixed convection from a horizontal circular cylinder. International Journal of Heat and Mass Transfer 20(1): 73-77.
Merkin, J.H. 1976.
Free convection boundary layer on an isothermal horizontal cylinder. ASME/AIChe Heat Transfer Conference, St.
Louis, USA.
Molla, M.M., Hossain,
M.A. & Paul, M.C. 2006. Natural convection flow from an isothermal
horizontal circular cylinder in presence of heat generation. International Journal of Engineering Science 44(13-14): 949-958.
Nazar, R., Jaradat,
M., Arifin, N. & Pop, I. 2011. Stagnation-point flow past a shrinking sheet
in a nanofluid. Central European Journal
of Physics 9(5): 1195-1202.
Nazar, R., Amin, N.,
Filip, D. & Pop, I. 2004. Stagnation point flow of a micropolar fluid
towards a stretching sheet. International
Journal of Non-Linear Mechanics 39(7): 1227-1235.
Nazar, R., Amin, N.
& Pop, I. 2003. Mixed convection boundary-layer flow from a horizontal
circular cylinder in micropolar fluids: Case of constant wall temperature. International Journal of Numerical Methods
for Heat & Fluid Flow 13(1): 86-109.
Nazar, R., Amin, N.
& Pop, I. 2002. Free convection boundary layer on an isothermal horizontal
circular cylinder in a micropolar fluid. Proceedings
of Tweifth Int Heat Transfer Conference. Paris, Elsevier. 2: 525-530.
Partha, M.K., Murthy,
P. & Rajasekhar, G.P. 2005. Effect of viscous dissipation on the mixed
convection heat transfer from an exponentially stretching surface. Heat and Mass Transfer 41(4): 360-366.
Rosca, A.V., Rosca,
N.C. & Pop, I. 2014. Note on dual solutions for the mixed convection boundary
layer flow close to the lower stagnation point of a horizontal circular
cylinder: Case of constant surface heat flux. Sains Malaysiana 43(8): 1239-1247.
Roşca, N.C. &
Pop, I. 2014. Unsteady boundary layer flow of a nanofluid past a moving surface
in an external uniform free stream using Buongiorno’s model. Computers & Fluids 95(0): 49-55.
Salleh, M.Z., Nazar,
R. & Pop, I. 2011. Numerical solutions of forced convection boundary layer
flow on a horizontal circular cylinder with Newtonian heating. Malaysian Journal of Mathematical Sciences 5(2):
161-184.
Salleh, M.Z. &
Nazar, R. 2010. Free convection boundary layer flow over a horizontal circular
cylinder with Newtonian heating. Sains
Malaysiana 39(4): 671-676.
Salleh, M.Z., Nazar,
R. & Pop, I. 2009. Forced convection boundary layer flow at a forward
stagnation point with Newtonian heating. Chemical
Engineering Communications 196: 987-996.
Sarif, N.M., Salleh,
M.Z., Tahar, R.M. & Nazar, R. 2014. Numerical solution of the free
convection boundary layer flow over a horizontal circular cylinder with
convective boundary conditions. AIP
Conference Proceedings 1602: 179-185.
Singh, G. &
Makinde, O.D. 2014. Axisymmetric slip flow on a vertical cylinder with heat
transfer. Sains Malaysiana 43(3):
483-489.
Soundalgekar, V.M.
1972. Viscous dissipation effects on unsteady free convective flow past an
infinite, vertical porous plate with constant suction. International Journal of Heat and Mass Transfer 15(6): 1253-1261.
Tahavvor, A.R. &
Yaghoubi, M. 2010. Experimental and numerical study of frost formation by
natural convection over a cold horizontal circular cylinder. International Journal of Refrigeration 33(7):
1444-1458.
Tham, L., Nazar, R.
& Pop, I. 2014. Mixed convection flow from a horizontal circular cylinder
embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model. International Journal of Thermal Sciences 84:
21-33.
Tham, L. & Nazar,
R. 2012. Mixed convection flow about a solid sphere embedded in a porous medium
filled with a nanofluid. Sains Malaysiana 41(12): 1643-1649.
Tiwari, R. & Das,
M. 2007. Heat transfer augmentation in a two-sided lid-driven differentially
heated square cavity utilizing nanofluids. Int.
J. Heat Mass Transf. 50: 2002-2018.
Vajravelu, K. &
Hadjinicolaou, A. 1993. Heat transfer in a viscous fluid over a stretching
sheet with viscous dissipation and internal heat generation. International Communications in Heat and
Mass Transfer 20(3): 417-430.
Wong, K.V. & De
Leon, O. 2010. Applications of nanofluids: Current and future. Advances in Mechanical Engineering 2:
519659.
Yacob, N.A., Ishak,
A., Pop, I. & Vajravelu, K. 2011. Boundary layer flow past a
stretching/shrinking surface beneath an external uniform shear flow with a
convective surface boundary condition in a nanofluid. Nanoscale Research Letters 6(1): 1-7.
Yirga, Y. &
Shankar, B. 2013. Effects of thermal radiation and viscous dissipation on
magnetohydrodynamic stagnation point flow and heat transfer of nanofluid
towards a stretching sheet. Journal of
Nanofluids 2(4): 283-291.
Yusoff, N.H.M., Uddin,
M.J. & Ismail, A.I.M. 2014. Combined similarity-numerical solutions of MHD
boundary layer slip flow of non-Newtonian power-law nanofluids over a radiating
moving plate. Sains Malaysiana 43(1):
151-159.
*Corresponding author; email:
zukikuj@yahoo.com
|