Sains Malaysiana 45(3)(2016): 373–381
In vitro Regeneration and Comparison of Phenolic
Content, Antioxidant and Antityrosinase Activity of in vivo and
in vitro Grown Asparagus officinalis
(Penjanaan Semula in vitro dan Perbandingan
Kandungan Fenolik, Antioksida danAktiviti Antitirosinase Asparagus
officinalis Ditanam Secara in vivo dan in vitro)
ARASH KHORASANI
ESMAEILI*,
ROSNA
MAT
TAHA,
SADEGH
MOHAJER
& BEHROOZ BANISALAM
Institute of Biological
Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur
Malaysia
Received: 7 August
2014/Accepted: 7 September 2015
ABSTRACT
Asparagus officinalis as
a valuable medicinal plant has a low multiplication rate using the
conventional methods. This study was carried out to establish an
efficient in vitro propagation protocol and also to
compare some biological activities of in vivo and
in vitro grown Asparagus. The nodal explants were cultured
on MS medium
supplemented with different concentrations of 6-benzylaminopurine
(BAP)
and 1-Naphthaleneacetic acid (NAA) or kinetin (Kn) and Indolebutyric
acid (IBA), under light and dark conditions.
After 6 weeks of culture, the highest percentage (100%) of callus
formation was found in 17 of treatments under dark condition and
3 treatments under light condition. Also between the two groups
of hormones, Kn +IBA showed
better results in promoting callus formation. The highest average
number of shoots (4.25) of size 4 mm or more per explant, formed
under dark condition using 1.5 mg/L BAP mixed with 0.05 mg/L NAA.
Rooting was best induced in shoots excised from shoot cultures which
were proliferated on MS medium supplemented with an optimal
concentration of 0.4 mg/L IBA (2 roots per explant). In the second
part of the study, the extracts of in vivo and in vitro
grown plants as well as callus tissue were tested for their total
phenolic and flavonoid content, antioxidant and antityrosinase activities,
using two different extraction solvents (methanol and hexane). The
methanol extract of in vivo grown plants showed a significantly
higher amount of total phenolic and flavonoid content. The antioxidant
activity of tested samples followed this order; in vivo plant
> callus > in vitro plant.
Keywords: Antioxidant; antityrosinase;
flavonoid; phenolic; propagation
ABSTRAK
Asparagus officinalis sebagai
tumbuhan ubatan yang bernilai mempunyai kadar pembiakan yang rendah
apabila dibiakkan secara konvensional. Kajian ini bertujuan untuk
menghasilkan kaedah pembiakan secara in vitro yang cekap
dan untuk membandingkan aktiviti biologi daripada Asparagus
officinalis yang ditanam secara in vivo (biasa) dan in
vitro (kaedah kultur tisu). Eksplan nodal dikultur menggunakan
media MS yang ditambah kepekatan hormon 6-benzilaminopurin ( BAP)
dan asid 1- naftalena (NAA) atau kinetin (Kn) dan asid indolbutrik
(IBA) di bawah keadaan cahaya dan gelap. Selepas 6 minggu,
peratus tertinggi (100%) pembentukan kalus didapati daripada 17
rawatan yang diletakkan di bawah keadaan gelap dan 3 rawatan di
bawah cahaya. Didapati daripada 2 kumpulan hormon, Kn dan IBA telah menunjukkan keputusan yang
lebih baik dalam pembentukan kalus. Purata pembentukan pucuk tertinggi
(4.25) bersaiz 4 mm atau lebih bagi setiap eksplan, terbentuk di
bawah keadaan gelap menggunakan 1.5 mg/L BAP beserta 0.05 mg/L NAA.
Pertumbuhan akar didapati terbaik apabila pucuk diambil daripada
kultur yang dibiakkan dalam media MS yang ditambah dengan 0.4 mg/L IBA
(2 akar setiap pucuk). Dalam bahagian kedua eksperimen,
ekstrak daripada tumbuhan yang ditanam secara in vivo, in
vitro dan juga tisu kalus telah dikaji untuk mengetahui jumlah
fenolik dan kandungan flavonoid, aktiviti antioksidan serta antitirosinase
menggunakan 2 pelarut (metanol dan heksan). Ekstrak metanol daripada
tumbuhan in vivo menunjukkan jumlah fenolik dan kandungan
flavonoid yang ketara dan signifikan. Aktiviti antioksidan bagi
sampel yang telah dikaji adalah dalam susunan berikut: tumbuhan
in vivo> kalus > tumbuhan in vitro.
Kata kunci: Antioksidan; antitirosinase; fenolik; flavonoid; propagasi
REFERENCES
Biruhalem Taye,
Mirutse Giday, Abebe Animut & Jemal Seid. 2011. Antibacterial
activities of selected medicinal plants in traditional treatment
of human wounds in Ethiopia. Asian Pacific Journal of Tropical
Biomedicine 1(5): 370-375.
Bopana, N. &
Saxena, S. 2008. In vitro propagation of a high value medicinal
plant: Asparagus racemosus Willd. In Vitro Cellular &
Developmental Biology-Plant 44(6): 525-532.
Brewer, M.S. 2011.
Natural antioxidants: Sources, compounds, mechanisms of action,
and potential applications. Comprehensive Reviews in Food Science
and Food Safety 10(4): 221-247.
Carmona-Martin,
E., Regalado, J.J., Padilla, I.M.G., Westendorp, N. & Encina.
C.L. 2014. A new and efficient micropropagation method and its breeding
applications in Asparagus genera. Plant Cell, Tissue and Organ
Culture (PCTOC) 119(3): 479-488.
Cheung, L.M., Peter
Cheung, C.K. & Vincent Ooi, E.C. 2003. Antioxidant activity
and total phenolics of edible mushroom extracts. Food Chemistry
81(2): 249-255.
Chin, C.K. 1982.
Promotion of shoot and root formation in asparagus in vitro by
ancymidol (Growth retardant, tissue culture). HortScience 17:
590-591.
Chu, H.L., Wang,
B.S. & Duh, P.D. 2009. Effects of selected organo-sulfur compounds
on melanin formation. Journal of Agricultural and Food Chemistry
57(15): 7072-7077.
Dimitrios, B. 2006.
Sources of natural phenolic antioxidants. Trends in Food Science
& Technology 17(9): 505-512.
Erkan, N., Ayranci,
G. & Ayranci, E. 2008. Antioxidant activities of rosemary (Rosmarinus
officinalis L.) extract, blackseed (Nigella sativa L.)
essential oil, carnosic acid, rosmarinic acid and sesamol. Food
Chemistry 110(1): 76-82.
Germanas, J.P.,
Wang, S., Miner, A., Hao, W. & Ready, J.M. 2007. Discovery of
small-molecule inhibitors of tyrosinase. Bioorganic & Medicinal
Chemistry Letters 17(24): 6871-6875.
Ghosh, B. &
Sen, S. 1991. Plant regeneration through somatic embryogenesis from
spear callus culture of Asparagus cooperi Baker. Plant
Cell Reports 9(12): 667-670.
Harada, T. &
Yakuwa, T. 1983. Studies on the morphogenesis of asparagus, 7: Callus
and organ formation in the in vitro culture of cladophylls.
Journal of the Faculty of Agriculture Hokkaido University 61(3):
344-350.
Inagaki, N., Harada,
T. & Yakuwa, T. 1980. Studies on anther culture in horticultural
crops. I. Callus formation in asparagus anthers. Journal of the
Japanese Society for Horticultural Science 49(1): 71-78.
Jiang, X.H., Zeng,
G.P., Ou, L.J. & She, C.W. 2013. An efficient system for the
production of the medicinally important plant: Asparagus cochinchinensis
(Lour.) Merr. African Journal of Biotechnology 9(37):
6207-6212.
Kar, D.K. &
Sen, S. 1985. Propagation of Asparagus racemosus through
tissue culture. Plant Cell, Tissue and Organ Culture 5(1):
89-95.
Kaurinovic, B.,
Popovic, M., Vlaisavljevic, S., Schwartsova, H. & Vojinovic-Miloradov,
M. 2012. Antioxidant profile of Trifolium pratense L. Molecules
17(9): 11156-11172.
Murashige, T.,
Shabde, M.N., Hasegawa, P.M., Takatori, F.H. & Jones, J.B. 1972.
Propagation of asparagus through shoot apex culture. I. Nutrient
medium for formation of plantlets. Amer. Soc. Hort. Sci. J. 97:
158-161.
Murashige, T. &
Skoog, F. 1962. A revised medium for rapid growth and bio assays
with tobacco tissue cultures. Physiologia Plantarum 15(3):
473-497.
Palombo,
E.A. 2011. Traditional medicinal plant extracts and natural products
with activity against oral bacteria: Potential application in the
prevention and treatment of oral diseases. Evidence-Based Complementary
and Alternative Medicine 2011: Article ID: 680354.
Pontaroli, A.C. & Camadro, E.L. 2005. Somaclonal variation
in Asparagus officinalis plants regenerated by organogenesis
from long-term callus cultures. Genetics and Molecular Biology
28(3): 423-430.
Pourmorad, F.,
Hosseinimehr, S.J. & Shahabimajd, N. 2006. Antioxidant activity,
phenol and flavonoid contents of some selected Iranian medicinal
plants. African Journal of Biotechnology 5(11): 1142-1145.
Rafat, A., Philip,
K. & Muniandy, S. 2010. Antioxidant potential and phenolic content
of ethanolic extract of selected Malaysian plants. Res. J. Biotechnol.
5: 16-19.
Reuther, G. 1984.
Asparagus. In Handbook of Plant Cell Culture, Vol. 2, edited by Sharp, W.R., Evans,
D.A., Amminato, P.V. & Yamada, Y. New York: Macmillan Publishing
Co. pp. 211- 242.
Reuther, G. 1977.
Adventitious organ formation and somatic embryogenesis in callus
of asparagus and iris and its possible application. In Symposium
on Tissue Culture for Horticultural Purposes 78: 217-224.
Roh, J.S., Han,
J.Y., Kim, J.H. & Hwang, J.K. 2004. Inhibitory effects of active
compounds isolated from safflower (Carthamus tinctorius L.)
seeds for melanogenesis. Biological and Pharmaceutical Bulletin
27(12): 1976-1978.
Sarabi, B. &
Almasi, K. 2010. Indirect organogenesis is useful for propagation
of Iranian edible wild asparagus (Asparagus officinalis L.).
Asian Journal of Agricultural Sciences 2(2): 47-50.
Štajner, N. 2013.
Micropropagation of Asparagus by in vitro shoot culture.
In Protocols for Micropropagation of Selected Economically-Important
Horticultural Plants. New York: Humana Press. pp. 341-351.
Štajner, N., Bohanec,
B. & Jakše, M. 2002. In vitro propagation of Asparagus
maritimus-a rare Mediterranean salt-resistant species. Plant
Cell, Tissue and Organ Culture 70(3): 269-274.
Tosun, M., Ercisli,
S., Sengul, M., Ozer, H., Polat, T. & Ozturk, E. 2009. Antioxidant
properties and total phenolic content of eight Salvia species from
Turkey. Biological Research 42(2): 175-181.
Uddin, L.Q., Kaplan,
J.T., Molnar-Szakacs, I., Zaidel, E. & Iacoboni, M. 2005. Self-face
recognition activates a frontoparietal ‘mirror’ network in the right
hemisphere: An event-related fMRI study. Neuroimage 25(3):
926-935.
Verpoorte, R.,
Contin, A. & Memelink, J. 2002. Biotechnology for the production
of plant secondary metabolites. Phytochemistry Reviews 1(1):
13-25.
*Corresponding author; email: arash_khorasani@yahoo.com
|