Sains Malaysiana 45(3)(2016): 373–381

In vitro Regeneration and Comparison of Phenolic Content, Antioxidant and Antityrosinase Activity of in vivo and in vitro Grown Asparagus officinalis

(Penjanaan Semula in vitro dan Perbandingan Kandungan Fenolik, Antioksida danAktiviti Antitirosinase Asparagus officinalis Ditanam Secara in vivo dan in vitro)

 

 

ARASH KHORASANI ESMAEILI*, ROSNA MAT TAHA, SADEGH MOHAJER & BEHROOZ BANISALAM

 

Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur

Malaysia

 

Received: 7 August 2014/Accepted: 7 September 2015

 

ABSTRACT

Asparagus officinalis as a valuable medicinal plant has a low multiplication rate using the conventional methods. This study was carried out to establish an efficient in vitro propagation protocol and also to compare some biological activities of in vivo and in vitro grown Asparagus. The nodal explants were cultured on MS medium supplemented with different concentrations of 6-benzylaminopurine (BAP) and 1-Naphthaleneacetic acid (NAA) or kinetin (Kn) and Indolebutyric acid (IBA), under light and dark conditions. After 6 weeks of culture, the highest percentage (100%) of callus formation was found in 17 of treatments under dark condition and 3 treatments under light condition. Also between the two groups of hormones, Kn +IBA showed better results in promoting callus formation. The highest average number of shoots (4.25) of size 4 mm or more per explant, formed under dark condition using 1.5 mg/L BAP mixed with 0.05 mg/L NAA. Rooting was best induced in shoots excised from shoot cultures which were proliferated on MS medium supplemented with an optimal concentration of 0.4 mg/L IBA (2 roots per explant). In the second part of the study, the extracts of in vivo and in vitro grown plants as well as callus tissue were tested for their total phenolic and flavonoid content, antioxidant and antityrosinase activities, using two different extraction solvents (methanol and hexane). The methanol extract of in vivo grown plants showed a significantly higher amount of total phenolic and flavonoid content. The antioxidant activity of tested samples followed this order; in vivo plant > callus > in vitro plant.

 

Keywords: Antioxidant; antityrosinase; flavonoid; phenolic; propagation

 

ABSTRAK

Asparagus officinalis sebagai tumbuhan ubatan yang bernilai mempunyai kadar pembiakan yang rendah apabila dibiakkan secara konvensional. Kajian ini bertujuan untuk menghasilkan kaedah pembiakan secara in vitro yang cekap dan untuk membandingkan aktiviti biologi daripada Asparagus officinalis yang ditanam secara in vivo (biasa) dan in vitro (kaedah kultur tisu). Eksplan nodal dikultur menggunakan media MS yang ditambah kepekatan hormon 6-benzilaminopurin ( BAP) dan asid 1- naftalena (NAA) atau kinetin (Kn) dan asid indolbutrik (IBA) di bawah keadaan cahaya dan gelap. Selepas 6 minggu, peratus tertinggi (100%) pembentukan kalus didapati daripada 17 rawatan yang diletakkan di bawah keadaan gelap dan 3 rawatan di bawah cahaya. Didapati daripada 2 kumpulan hormon, Kn dan IBA telah menunjukkan keputusan yang lebih baik dalam pembentukan kalus. Purata pembentukan pucuk tertinggi (4.25) bersaiz 4 mm atau lebih bagi setiap eksplan, terbentuk di bawah keadaan gelap menggunakan 1.5 mg/L BAP beserta 0.05 mg/L NAA. Pertumbuhan akar didapati terbaik apabila pucuk diambil daripada kultur yang dibiakkan dalam media MS yang ditambah dengan 0.4 mg/L IBA (2 akar setiap pucuk). Dalam bahagian kedua eksperimen, ekstrak daripada tumbuhan yang ditanam secara in vivo, in vitro dan juga tisu kalus telah dikaji untuk mengetahui jumlah fenolik dan kandungan flavonoid, aktiviti antioksidan serta antitirosinase menggunakan 2 pelarut (metanol dan heksan). Ekstrak metanol daripada tumbuhan in vivo menunjukkan jumlah fenolik dan kandungan flavonoid yang ketara dan signifikan. Aktiviti antioksidan bagi sampel yang telah dikaji adalah dalam susunan berikut: tumbuhan in vivo> kalus > tumbuhan in vitro.

 

Kata kunci: Antioksidan; antitirosinase; fenolik; flavonoid; propagasi

REFERENCES

Biruhalem Taye, Mirutse Giday, Abebe Animut & Jemal Seid. 2011. Antibacterial activities of selected medicinal plants in traditional treatment of human wounds in Ethiopia. Asian Pacific Journal of Tropical Biomedicine 1(5): 370-375.

Bopana, N. & Saxena, S. 2008. In vitro propagation of a high value medicinal plant: Asparagus racemosus Willd. In Vitro Cellular & Developmental Biology-Plant 44(6): 525-532.

Brewer, M.S. 2011. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety 10(4): 221-247.

Carmona-Martin, E., Regalado, J.J., Padilla, I.M.G., Westendorp, N. & Encina. C.L. 2014. A new and efficient micropropagation method and its breeding applications in Asparagus genera. Plant Cell, Tissue and Organ Culture (PCTOC) 119(3): 479-488.

Cheung, L.M., Peter Cheung, C.K. & Vincent Ooi, E.C. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry 81(2): 249-255.

Chin, C.K. 1982. Promotion of shoot and root formation in asparagus in vitro by ancymidol (Growth retardant, tissue culture). HortScience 17: 590-591.

Chu, H.L., Wang, B.S. & Duh, P.D. 2009. Effects of selected organo-sulfur compounds on melanin formation. Journal of Agricultural and Food Chemistry 57(15): 7072-7077.

Dimitrios, B. 2006. Sources of natural phenolic antioxidants. Trends in Food Science & Technology 17(9): 505-512.

Erkan, N., Ayranci, G. & Ayranci, E. 2008. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chemistry 110(1): 76-82.

Germanas, J.P., Wang, S., Miner, A., Hao, W. & Ready, J.M. 2007. Discovery of small-molecule inhibitors of tyrosinase. Bioorganic & Medicinal Chemistry Letters 17(24): 6871-6875.

Ghosh, B. & Sen, S. 1991. Plant regeneration through somatic embryogenesis from spear callus culture of Asparagus cooperi Baker. Plant Cell Reports 9(12): 667-670.

Harada, T. & Yakuwa, T. 1983. Studies on the morphogenesis of asparagus, 7: Callus and organ formation in the in vitro culture of cladophylls. Journal of the Faculty of Agriculture Hokkaido University 61(3): 344-350.

Inagaki, N., Harada, T. & Yakuwa, T. 1980. Studies on anther culture in horticultural crops. I. Callus formation in asparagus anthers. Journal of the Japanese Society for Horticultural Science 49(1): 71-78.

Jiang, X.H., Zeng, G.P., Ou, L.J. & She, C.W. 2013. An efficient system for the production of the medicinally important plant: Asparagus cochinchinensis (Lour.) Merr. African Journal of Biotechnology 9(37): 6207-6212.

Kar, D.K. & Sen, S. 1985. Propagation of Asparagus racemosus through tissue culture. Plant Cell, Tissue and Organ Culture 5(1): 89-95.

Kaurinovic, B., Popovic, M., Vlaisavljevic, S., Schwartsova, H. & Vojinovic-Miloradov, M. 2012. Antioxidant profile of Trifolium pratense L. Molecules 17(9): 11156-11172.

Murashige, T., Shabde, M.N., Hasegawa, P.M., Takatori, F.H. & Jones, J.B. 1972. Propagation of asparagus through shoot apex culture. I. Nutrient medium for formation of plantlets. Amer. Soc. Hort. Sci. J. 97: 158-161.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497.

Palombo, E.A. 2011. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evidence-Based Complementary and Alternative Medicine 2011: Article ID: 680354.

Pontaroli, A.C. & Camadro, E.L. 2005. Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long-term callus cultures. Genetics and Molecular Biology 28(3): 423-430.

Pourmorad, F., Hosseinimehr, S.J. & Shahabimajd, N. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology 5(11): 1142-1145.

Rafat, A., Philip, K. & Muniandy, S. 2010. Antioxidant potential and phenolic content of ethanolic extract of selected Malaysian plants. Res. J. Biotechnol. 5: 16-19.

Reuther, G. 1984. Asparagus. In Handbook of Plant Cell Culture, Vol. 2, edited by Sharp, W.R., Evans, D.A., Amminato, P.V. & Yamada, Y. New York: Macmillan Publishing Co. pp. 211- 242.

Reuther, G. 1977. Adventitious organ formation and somatic embryogenesis in callus of asparagus and iris and its possible application. In Symposium on Tissue Culture for Horticultural Purposes 78: 217-224.

Roh, J.S., Han, J.Y., Kim, J.H. & Hwang, J.K. 2004. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biological and Pharmaceutical Bulletin 27(12): 1976-1978.

Sarabi, B. & Almasi, K. 2010. Indirect organogenesis is useful for propagation of Iranian edible wild asparagus (Asparagus officinalis L.). Asian Journal of Agricultural Sciences 2(2): 47-50.

Štajner, N. 2013. Micropropagation of Asparagus by in vitro shoot culture. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. New York: Humana Press. pp. 341-351.

Štajner, N., Bohanec, B. & Jakše, M. 2002. In vitro propagation of Asparagus maritimus-a rare Mediterranean salt-resistant species. Plant Cell, Tissue and Organ Culture 70(3): 269-274.

Tosun, M., Ercisli, S., Sengul, M., Ozer, H., Polat, T. & Ozturk, E. 2009. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biological Research 42(2): 175-181.

Uddin, L.Q., Kaplan, J.T., Molnar-Szakacs, I., Zaidel, E. & Iacoboni, M. 2005. Self-face recognition activates a frontoparietal ‘mirror’ network in the right hemisphere: An event-related fMRI study. Neuroimage 25(3): 926-935.

Verpoorte, R., Contin, A. & Memelink, J. 2002. Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews 1(1): 13-25.

 

 

*Corresponding author; email: arash_khorasani@yahoo.com

 

 

 

 

previous