Sains Malaysiana 45(4)(2016): 507–515
Growth Stages of Torch
Ginger (Etlingera elatior) Plant
(Tahap Tumbesaran Tumbuhan
Kantan (Etlingera elatior)
S.Y. CHOON
& P. DING*
Department
of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia
43400
Serdang, Selangor Darul Ehsan, Malaysia
Received:
13 October 2014/Accepted: 19 October 2015
ABSTRACT
Torch ginger (Etlingera elatior) is a herbaceous clumping plant. It is a multifunctional
crop that has been used for culinary, medicinal, antibacterial
agent, ornamental and floral arrangement purpose. However,
from the literature, no work has been carried out to study its
growth and development morphological characteristics. It is important
to understand the developmental morphology of the torch ginger
plant for research purpose, commercial usage and apply proper
production practices by growers for higher yields and profits.
Therefore, the aim of this study was to determine the time course
of morphological changes during the growth and development of
torch ginger. Results showed that it took 155 days from leafy
shoot emerging from rhizome until senescence of inflorescence.
The growth and development of torch ginger plant were divided
into vegetative and reproductive phases. The vegetative phase
mainly involved the growth activities of leafy shoot. The transition
of vegetative to reproductive phase happened when the inflorescence
shoot emerged from the rhizome. In the reproductive phase, the
growth and development of the inflorescence were categorized into
four phenological stages which were peduncle elongation, inflorescence
emergence, flowering and senescence. The growth pattern of the
leafy shoot and inflorescence demonstrated a monocarpic plant
growth habit with the remobilization of photoassimilates from
senescing plant parts to developing true flowers that caused whole-plant
senescence. Further research is needed to study the mechanisms
that regulate flowering and senescence in torch ginger plant.
Keywords: Monocarpic;
morphology; phenology; photoassimilates remobilization; whole-plant
senescence
ABSTRAK
Kantan (Etlingera elatior) adalah merupakan tanaman herba. Kantan merupakan
tumbuhan yang mempunyai pelbagai fungsi yang boleh digunakan dalam
masakan, perubatan, sebagai agen anti-bakteria dan gubahan bunga.
Walaupun demikian, tiada kajian dijalankan ke atas ciri morfologi
tumbesaran dan perkembangannya. Memahami perkembangan ciri morfologi
kantan adalah penting untuk penyelidikan dan kegunaan komersial
dan penanam juga boleh mengaplikasi amalan pengeluaran yang sesuai
untuk memperoleh hasil dan keuntungan yang lebih tinggi dan lumayan.
Oleh itu, tujuan kajian ini adalah untuk menentukan perubahan
ciri morfologi dalam tumbesaran dan perkembangan kantan. Keputusan
menunjukkan kantan mengambil masa selama 155 hari berkembang daripada
kemunculan pucuk daun sehingga penuaan bunga. Tumbesaran dan perkembangan
pokok kantan terbahagi kepada fasa vegetatif dan reproduktif.
Fasa vegetatif melibatkan aktiviti pertumbuhan daun pada pucuk.
Peralihan fasa vegetatif ke reproduktif berlaku apabila pucuk
bunga tumbuh keluar daripada rizom. Dalam fasa reproduktif, tumbesaran
dan perkembangan bunga dikategorikan kepada empat peringkat fenologi
iaitu pemanjangan tangkai bunga, kemunculan perbungaan, berbunga
dan senesen. Corak tumbesaran pucuk daun dan perbungaan kantan
menunjukkan tabiat tumbuhan monokarpa yang melibatkan mobilisasi
fotoasimilat daripada bahagian tumbuhan yang mulai tua ke bunga
sebenar dalam perkembangannya. Akhirnya proses ini menyebabkan
kematian pada pokok tersebut. Penyelidikan lanjutan diperlukan
untuk mengkaji mekanisme yang mengawal pembungaan dan penuaan
kantan.
Kata kunci: Fenologi; mobilisasi fotoasimilat; monokarpa; morfologi;
penuaan seluruh tumbuhan
REFERENCES
Abdelmageed,
A.H.A., Faridah, Q.Z., Nur Amalina, A. & Muhamad, Y. 2011.
The influence of organ and post-harvest drying period on yield
and chemical composition of the essential oils of Etlingera
elatior (Zingiberaceae). Journal of Medicinal Plants Research
5(15): 3432-3439.
Abdelwahab,
S.I., Zaman, F.Q., Mariod, A.A., Yaacob, M., Ahmed Abdelmageed,
A.H. & Khamis, S. 2010. Chemical composition, antioxidant
and antibacterial properties of the essential oils of Etlingera
elatior and Cinnamomum pubescens Kochummen. Journal
of Science in Food and Agriculture 90: 2682-2688.
Bieleski,
R.L. 1995. Onset of phloem export from senescent petals of daylily.
Plant Physiology 109: 557-565.
Bunya-atichart,
K., Ketsa, S. & van Doorn, W.G. 2004. Postharvest physiology
of Curcuma alismatifolia flowers. Postharvest Biology
and Technology 34: 219-226.
Chan,
E.W.C., Lim, Y.Y. & Wong, S.K. 2011. Phytochemistry and pharmacological
properties of Etlingera elatior: A review. Pharmacognosy
Journal 3(22): 6-10.
Chan,
E.W.C., Lim, Y.Y. & Omar, M. 2007. Antioxidant and antibacterial
activity of leaves of Etlingera species (Zingiberaceae)
in Peninsular Malaysia. Food Chemistry 104: 1586-1593.
Del
Duca, S., Serafini-Fracassini, D. & Cai, G. 2014. Senescence
and programmed cell death in plants: Polyamine action mediated
by transglutaminase. Frontiers in Plant Science 5: 120.
Guiboileau,
A., Sormani, R., Meyer, C. & Masclaux-Daubresse, C. 2010.
Senescence and death of plant organs: Nutrient recycling and developmental
regulation. Comptes Rendus Biologies 333: 382-391.
Hensel,
L.L., Grbić, V., Baumgarten, D.A. & Bleecker, A.B. 1993.
Developmental and age-related processes that influence the longevity
and senescence of photosynthetic tissues in Arabidopsis.
Plant Cell 5(5): 553-564.
Jackie,
T., Haleagrahara, N. & Chakravarthi, S. 2011. Antioxidant
effects of Etlingera elatior flower extract against lead
acetate-induced perturbations in free radical scavenging enzymes
and lipid peroxidation in rats. BMC Research Notes 4: 67-74.
Jones,
M.L. 2013. Mineral nutrient remobilization during corolla senescence
in ethylene-sensitive and -insensitive flowers. AoB Plants
5: plt023.
Lachumy,
S.J.T., Sasidharan, S., Sumathy, V. & Zuraini, Z. 2010. Pharmacological
activity, phytochemical analysis and toxicity of methanol extract
of Etlingera elatior (torch ginger) flowers. Asian Pacific
Journal of Tropical Medicine 3: 769-774.
Lim,
P.O., Kim, H.J. & Nam, H.G. 2007. Leaf senescence. Annual
Review of Plant Biology 58: 115-136.
Mohamad,
H., Lajis, N.H., Abas, F., Ali, A.M., Sukari, M.A., Kikuzaki,
H. & Nakatani, N. 2005. Antioxidative constituents of Etlingera
elatior. Journal of Natural Products 68: 285-288.
Munné-Bosch,
S. 2008. Do perennials really senescence? Trends in Plant Science
13(5): 216-220.
Punnawich,
Y., Montree, I., Warin, I. & Kan, C. 2009. Antifungal effects
of Thai medicinal plants against Collectotrichum gloeosporioides
Penz. Philippine Agricultural Scientist 92(3): 265-270.
Ranwala,
A.P. & Miller, W.B. 2009. Comparison of the dynamic of non-structural
carbohydrate pools in cut tulip stems supplied with sucrose or
trehalose. Postharvest Biology and Technology 52: 91-96.
Sakai,
S., Kato, M. & Inoue, T. 1999. Three pollination guilds and
variation in floral characteristics of Bornean gingers (Zingiberaceae
and Costaceae). American Journal of Botany 86(5): 646-658.
Schippers,
J.H.M., Jing, H.C., Hille, J. & Dijkwel, P.P. 2007. Developmental
and hormonal control of leaf senescence. In Annual Plant Reviews
Volume 26: Senescence Processes in Plants, edited by Gan,
S. United Kingdom: Blackwell Publishing Ltd. pp. 145-170.
Scofield,
G.N., Ruuska, S.A., Aoki, N., Lewis, D.C., Tabe, L.M. & Jenkins,
C.L.D. 2009. Starch storage in the stem of wheat plants: Localization
and temporal changes. Annals of Botany 103: 859-868.
Sklensky,
D.E. & Davies, P.J. 2011. Resource partitioning to male and
female flowers of Spinacia oleracea L. in relation to whole-plant
monocarpic senescence. Journal of Experimental Botany 62(12):
4323-4336.
Srivalli,
B. & Khanna-Chopra, R. 2004. The developing reproductive ‘sink’
induces oxidative stress to mediate nitrogen mobilization during
monocarpic senescence in wheat. Biochemical and Biophysical
Research Communications 325: 198-202.
van
der Meulen-Muisers, J.J.M., van Oeveren, J.C., van der Plas, L.H.W.
& van Tuyl, J.M. 2001. Postharvest flower development in Asiatic
hybrid lilies as related to tepal carbohydrate status. Postharvest
Biology and Technology 21: 201-211.
van
Doorn, W.G. & Woltering, E.J. 2008. Physiology and molecular
biology of petal senescence. Journal of Experimental Botany
59(3): 453-480.
Voon,
H.C., Bhat, R. & Rusul, G. 2012. Flower extracts and their
essential oils as potential antimicrobial agents for food uses
and pharmaceutical applications. Comprehensive Reviews in Food
Science and Food Safety 11: 34-55.
Waithaka,
K., Dodge, L.L. & Reid, M.S. 2001. Carbohydrate traffic during
opening of gladiolus florets. Journal of Horticultural Science
and Biotechnology 76: 120-124.
Wijekoon,
M.M.J.O., Bhat, R., Karim, A.A. & Fazilah, A. 2013. Chemical
composition and antimicrobial activity of essential oil and solvent
extracts of torch ginger inflorescence (Etlingera elatior Jack).
International Journal of Food Properties 16: 1200-1210.
*Corresponding author; email: phebe@upm.edu.my